File size: 6,272 Bytes
32b7e61 7d80113 32b7e61 6c7a353 761ee23 38f7479 761ee23 6c7a353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
---
license: apache-2.0
language:
- es
- ca
base_model:
- openai/whisper-large-v3
pipeline_tag: automatic-speech-recognition
library_name: transformers
tags:
- bsc
- projecte-aina
- barcelona-supercomputing-center
- automatic-speech-recognition
- whisper-large-v3
- code-switching
- spanish-catalan
- spanish
- catalan
---
# whisper-large-v3-tiny-caesar
## Table of Contents
<details>
<summary>Click to expand</summary>
- [Model Description](#model-description)
- [Intended Uses and Limitations](#intended-uses-and-limitations)
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
- [Training Details](#training-details)
- [Citation](#citation)
- [Additional Information](#additional-information)
</details>
## Summary
The "whisper-large-v3-tiny-caesar" is an acoustic model based on ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) suitable for Automatic Speech Recognition in code switching conditions between Spanish and Catalan.
## Model Description
The "whisper-large-v3-tiny-caesar" is an acoustic model suitable for Automatic Speech Recognition in code switching conditions between Spanish and Catalan. It is the result of finetuning the model ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) with 2 hours of synthetic code switching data in Spanish/Catalan generated by the [Projecte AINA](https://projecteaina.cat/) from Barcelona, Spain.
CAESAR is an acronym with the following meaning:
(CA)talan (ES)panish (A)utomatic (R)ecognition
While "tiny" indicates that this model was finetuned with a very small amount of synthetic data (2 hours only).
## Intended Uses and Limitations
This model can be used for Automatic Speech Recognition (ASR) in code switching conditions between Spanish and Catalan. The model is intended to transcribe audio files to plain text.
## How to Get Started with the Model
To see an updated and functional version of this code, please see our our [Notebook](https://colab.research.google.com/drive/1MHiPrffNTwiyWeUyMQvSdSbfkef_8aJC?usp=sharing)
### Installation
In order to use this model, you may install [datasets](https://huggingface.co/docs/datasets/installation) and [transformers](https://huggingface.co/docs/transformers/installation):
Create a virtual environment:
```bash
python -m venv /path/to/venv
```
Activate the environment:
```bash
source /path/to/venv/bin/activate
```
Install the modules:
```bash
pip install datasets transformers
```
### For Inference
In order to transcribe audio in Catalan using this model, you can follow this example:
```bash
#Install Prerequisites
pip install torch
pip install datasets
pip install 'transformers[torch]'
pip install evaluate
pip install jiwer
```
```python
#This code works with GPU
#Notice that: load_metric is no longer part of datasets.
#you have to remove it and use evaluate's load instead.
#(Note from November 2024)
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
#Load the processor and model.
MODEL_NAME="projecte-aina/whisper-large-v3-tiny-caesar"
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda")
#Load the dataset
from datasets import load_dataset, load_metric, Audio
ds=load_dataset("projecte-aina/3catparla_asr",split='test')
#Downsample to 16kHz
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
#Process the dataset
def map_to_pred(batch):
audio = batch["audio"]
input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
batch["reference"] = processor.tokenizer._normalize(batch['normalized_text'])
with torch.no_grad():
predicted_ids = model.generate(input_features.to("cuda"))[0]
transcription = processor.decode(predicted_ids)
batch["prediction"] = processor.tokenizer._normalize(transcription)
return batch
#Do the evaluation
result = ds.map(map_to_pred)
#Compute the overall WER now.
from evaluate import load
wer = load("wer")
WER=100 * wer.compute(references=result["reference"], predictions=result["prediction"])
print(WER)
```
## Training Details
### Training data
The specific dataset used to create the model is a corpus called CAESAR-tiny which has not been released at the moment.
### Training procedure
This model is the result of finetuning the model ["openai/whisper-large-v3"](https://huggingface.co/openai/whisper-large-v3) by following this [tutorial](https://huggingface.co/blog/fine-tune-whisper) provided by Hugging Face.
### Training Hyperparameters
* language: Spanish
* hours of training audio: 2
* learning rate: 1e-5
* sample rate: 16000
* train batch size: 32 (x4 GPUs)
* gradient accumulation steps: 1
* eval batch size: 32
* save total limit: 3
* max steps: 80
* warmup steps: 8
* eval steps: 8
* save steps: 8
* shuffle buffer size: 480
## Citation
If this model contributes to your research, please cite the work:
```bibtex
@misc{mena2024whisperlarge3catparla,
title={Acoustic Model in Catalan: whisper-large-v3-tiny-caesar.},
author={Hernandez Mena, Carlos Daniel; Giraldo, Jose ;Armentano-Oller, Carme; Solito, Sarah; Messaoudi, Abir; Acosta, Federico; Zeballos, Rodolfo},
organization={Barcelona Supercomputing Center},
url={https://huggingface.co/projecte-aina/whisper-large-v3-tiny-caesar},
year={2024}
}
```
## Additional Information
### Author
The fine-tuning process was perform during November (2024) in the [Language Technologies Unit](https://huggingface.co/BSC-LT) of the [Barcelona Supercomputing Center](https://www.bsc.es/) by [Carlos Daniel Hernández Mena](https://huggingface.co/carlosdanielhernandezmena).
### Contact
For further information, please send an email to <[email protected]>.
### Copyright
Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center.
### License
[Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).
The training of the model was possible thanks to the compute time provided by [Barcelona Supercomputing Center](https://www.bsc.es/) through MareNostrum 5. |