gonzalez-agirre commited on
Commit
ed836ed
1 Parent(s): 186ce32

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -4
README.md CHANGED
@@ -54,12 +54,59 @@ widget:
54
 
55
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Textual Entailment.
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  The **roberta-base-ca-v2-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
58
 
59
- ## Datasets
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  We used the TE dataset in Catalan called [TECA](https://huggingface.co/datasets/projecte-aina/teca) for training and evaluation.
61
 
62
- ## Evaluation and results
 
 
 
 
 
 
 
 
 
63
  We evaluated the roberta-base-ca-cased-te on the TECA test set against standard multilingual and monolingual baselines:
64
 
65
  | Model | TECA (Accuracy) |
@@ -71,7 +118,12 @@ We evaluated the roberta-base-ca-cased-te on the TECA test set against standard
71
 
72
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
73
 
74
- ## Citing
 
 
 
 
 
75
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
76
  ```bibtex
77
  @inproceedings{armengol-estape-etal-2021-multilingual,
@@ -96,5 +148,9 @@ If you use any of these resources (datasets or models) in your work, please cite
96
  ```
97
 
98
  ### Funding
99
- This work was funded by the [Catalan Government](https://politiquesdigitals.gencat.cat/en/inici/index.html) within the framework of the [AINA project.](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
 
 
 
100
 
 
 
54
 
55
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Textual Entailment.
56
 
57
+ ## Table of Contents
58
+ - [Model Description](#model-description)
59
+ - [Intended Uses and Limitations](#intended-uses-and-limitations)
60
+ - [How to Use](#how-to-use)
61
+ - [Training](#training)
62
+ - [Training Data](#training-data)
63
+ - [Training Procedure](#training-procedure)
64
+ - [Evaluation](#evaluation)
65
+ - [Variable and Metrics](#variable-and-metrics)
66
+ - [Evaluation Results](#evaluation-results)
67
+ - [Licensing Information](#licensing-information)
68
+ - [Citation Information](#citation-information)
69
+ - [Funding](#funding)
70
+ - [Contributions](#contributions)
71
+
72
+ ## Model description
73
+
74
  The **roberta-base-ca-v2-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
75
 
76
+ ## Intended Uses and Limitations
77
+
78
+ **roberta-base-ca-v2-cased-te** model can be used to recognize Textual Entailment (TE). The model is limited by its training dataset and may not generalize well for all use cases.
79
+
80
+ ## How to Use
81
+
82
+ Here is how to use this model:
83
+
84
+ ```python
85
+ from transformers import pipeline
86
+ from pprint import pprint
87
+
88
+ nlp = pipeline("text-classification", model="projecte-aina/roberta-base-ca-v2-cased-te")
89
+ example = "M'agrada el sol i la calor. A la Garrotxa plou molt."
90
+
91
+ te_results = nlp(example)
92
+ pprint(te_results)
93
+ ```
94
+
95
+ ## Training
96
+
97
+ ### Training data
98
  We used the TE dataset in Catalan called [TECA](https://huggingface.co/datasets/projecte-aina/teca) for training and evaluation.
99
 
100
+ ### Training Procedure
101
+ The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
102
+
103
+ ## Evaluation
104
+
105
+ ### Variable and Metrics
106
+
107
+ This model was finetuned maximizing accuracy.
108
+
109
+ ## Evaluation results
110
  We evaluated the roberta-base-ca-cased-te on the TECA test set against standard multilingual and monolingual baselines:
111
 
112
  | Model | TECA (Accuracy) |
 
118
 
119
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
120
 
121
+
122
+ ## Licensing Information
123
+
124
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
125
+
126
+ ## Citation Information
127
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
128
  ```bibtex
129
  @inproceedings{armengol-estape-etal-2021-multilingual,
 
148
  ```
149
 
150
  ### Funding
151
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/en/inici/index.html) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
152
+
153
+
154
+ ## Contributions
155
 
156
+ [N/A]