mmarimon commited on
Commit
ee76b97
1 Parent(s): fd4b6b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -31
README.md CHANGED
@@ -56,31 +56,37 @@ widget:
56
  # Catalan BERTa (roberta-base-ca) finetuned for Part-of-speech-tagging (POS)
57
 
58
  ## Table of Contents
59
- - [Model Description](#model-description)
60
- - [Intended Uses and Limitations](#intended-uses-and-limitations)
61
- - [How to Use](#how-to-use)
 
 
 
 
62
  - [Training](#training)
63
- - [Training Data](#training-data)
64
- - [Training Procedure](#training-procedure)
65
  - [Evaluation](#evaluation)
66
- - [Variable and Metrics](#variable-and-metrics)
67
- - [Evaluation Results](#evaluation-results)
68
- - [Licensing Information](#licensing-information)
69
- - [Citation Information](#citation-information)
70
- - [Funding](#funding)
71
- - [Contributions](#contributions)
72
- - [Disclaimer](#disclaimer)
73
-
74
-
 
 
75
  ## Model description
76
 
77
  The **roberta-base-ca-cased-pos** is a Part-of-speech-tagging (POS) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers.
78
 
79
- ## Intended Uses and Limitations
80
 
81
  **roberta-base-ca-cased-pos** model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases.
82
 
83
- ## How to Use
84
 
85
  Here is how to use this model:
86
 
@@ -94,17 +100,21 @@ example = "Em dic Lluïsa i visc a Santa Maria del Camí."
94
  pos_results = nlp(example)
95
  pprint(pos_results)
96
  ```
 
 
 
 
97
  ## Training
98
 
99
  ### Training data
100
  We used the POS dataset in Catalan from the [Universal Dependencies Treebank](https://huggingface.co/datasets/universal_dependencies) we refer to _Ancora-ca-pos_ for training and evaluation.
101
 
102
- ### Training Procedure
103
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
104
 
105
  ## Evaluation
106
 
107
- ### Variable and Metrics
108
 
109
  This model was finetuned maximizing F1 score.
110
 
@@ -121,11 +131,24 @@ We evaluated the _roberta-base-ca-cased-pos_ on the Ancora-ca-ner test set again
121
 
122
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
123
 
124
- ## Licensing Information
 
 
 
 
 
 
125
 
 
 
 
 
126
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
127
 
128
- ## Citation Information
 
 
 
129
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
130
  ```bibtex
131
  @inproceedings{armengol-estape-etal-2021-multilingual,
@@ -149,17 +172,7 @@ If you use any of these resources (datasets or models) in your work, please cite
149
  }
150
  ```
151
 
152
- ### Funding
153
-
154
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
155
-
156
-
157
-
158
- ## Contributions
159
-
160
- [N/A]
161
-
162
- ## Disclaimer
163
 
164
  <details>
165
  <summary>Click to expand</summary>
 
56
  # Catalan BERTa (roberta-base-ca) finetuned for Part-of-speech-tagging (POS)
57
 
58
  ## Table of Contents
59
+ <details>
60
+ <summary>Click to expand</summary>
61
+
62
+ - [Model description](#model-description)
63
+ - [Intended uses and limitations](#intended-use)
64
+ - [How to use](#how-to-use)
65
+ - [Limitations and bias](#limitations-and-bias)
66
  - [Training](#training)
67
+ - [Training data](#training-data)
68
+ - [Training procedure](#training-procedure)
69
  - [Evaluation](#evaluation)
70
+ - [Variable and metrics](#variable-and-metrics)
71
+ - [Evaluation results](#evaluation-results)
72
+ - [Additional information](#additional-information)
73
+ - [Author](#author)
74
+ - [Contact information](#contact-information)
75
+ - [Copyright](#copyright)
76
+ - [Licensing information](#licensing-information)
77
+ - [Funding](#funding)
78
+ - [Citing information](#citing-information)
79
+ - [Disclaimer](#disclaimer)
80
+ </details>
81
  ## Model description
82
 
83
  The **roberta-base-ca-cased-pos** is a Part-of-speech-tagging (POS) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers.
84
 
85
+ ## Intended uses and limitations
86
 
87
  **roberta-base-ca-cased-pos** model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases.
88
 
89
+ ## How to use
90
 
91
  Here is how to use this model:
92
 
 
100
  pos_results = nlp(example)
101
  pprint(pos_results)
102
  ```
103
+
104
+ ## Limitations and bias
105
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
106
+
107
  ## Training
108
 
109
  ### Training data
110
  We used the POS dataset in Catalan from the [Universal Dependencies Treebank](https://huggingface.co/datasets/universal_dependencies) we refer to _Ancora-ca-pos_ for training and evaluation.
111
 
112
+ ### Training procedure
113
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
114
 
115
  ## Evaluation
116
 
117
+ ### Variable and metrics
118
 
119
  This model was finetuned maximizing F1 score.
120
 
 
131
 
132
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
133
 
134
+ ## Additional information
135
+
136
+ ### Author
137
+ Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])
138
+
139
+ ### Contact information
140
+ For further information, send an email to [email protected]
141
 
142
+ ### Copyright
143
+ Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
144
+
145
+ ### Licensing information
146
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
147
 
148
+ ### Funding
149
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
150
+
151
+ ### Citation Information
152
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
153
  ```bibtex
154
  @inproceedings{armengol-estape-etal-2021-multilingual,
 
172
  }
173
  ```
174
 
175
+ ### Disclaimer
 
 
 
 
 
 
 
 
 
 
176
 
177
  <details>
178
  <summary>Click to expand</summary>