prithivMLmods commited on
Commit
79ebb17
·
verified ·
1 Parent(s): 81ab1a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -17
README.md CHANGED
@@ -27,18 +27,6 @@ QwQ-Math-IO-500M is a fine-tuned variant of Qwen2.5-0.5B, specifically optimized
27
  - Multilingual capabilities (over 29 languages).
28
  4. **Optimized for Long Context**: Supports input contexts up to 128K tokens with generation capability up to 8K tokens.
29
 
30
- ---
31
-
32
- ## **Datasets Used**
33
-
34
- The model was fine-tuned on high-quality datasets explicitly curated for Chain of Thought (CoT) reasoning, mathematical problem-solving, and long-context tasks. Notable datasets include:
35
-
36
- 1. **[amphora/QwQ-LongCoT-130K](https://huggingface.co/datasets/amphora/QwQ-LongCoT-130K)**: 133k samples focused on complex CoT reasoning.
37
- 2. **[qingy2024/QwQ-LongCoT-Verified-130K](https://huggingface.co/datasets/qingy2024/QwQ-LongCoT-Verified-130K)**: 467k verified samples emphasizing detailed step-by-step reasoning.
38
- 3. **[gghfez/QwQ-LongCoT-130K-cleaned](https://huggingface.co/datasets/gghfez/QwQ-LongCoT-130K-cleaned)**: 125k cleaned samples for high-accuracy reasoning tasks.
39
-
40
- ---
41
-
42
  ## **Running the Model**
43
 
44
  To run the model using the Transformers library:
@@ -63,9 +51,6 @@ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
63
  outputs = model.generate(**input_ids, max_new_tokens=100)
64
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
65
  ```
66
-
67
- ---
68
-
69
  ## **Limitations**
70
 
71
  1. **Bias and Fairness**: Despite fine-tuning efforts, biases from the training data may persist. Users should critically assess model outputs.
@@ -75,8 +60,6 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
75
  5. **Safety Considerations**: Safety alignment has been performed, but users should monitor outputs to avoid inappropriate content.
76
  6. **Resource Requirements**: Running the model efficiently requires a GPU with sufficient memory.
77
 
78
- ---
79
-
80
  ## **Intended Use Cases**
81
 
82
  1. **Mathematical Assistance**: Solving equations, performing calculations, and explaining mathematical concepts.
 
27
  - Multilingual capabilities (over 29 languages).
28
  4. **Optimized for Long Context**: Supports input contexts up to 128K tokens with generation capability up to 8K tokens.
29
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ## **Running the Model**
31
 
32
  To run the model using the Transformers library:
 
51
  outputs = model.generate(**input_ids, max_new_tokens=100)
52
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
53
  ```
 
 
 
54
  ## **Limitations**
55
 
56
  1. **Bias and Fairness**: Despite fine-tuning efforts, biases from the training data may persist. Users should critically assess model outputs.
 
60
  5. **Safety Considerations**: Safety alignment has been performed, but users should monitor outputs to avoid inappropriate content.
61
  6. **Resource Requirements**: Running the model efficiently requires a GPU with sufficient memory.
62
 
 
 
63
  ## **Intended Use Cases**
64
 
65
  1. **Mathematical Assistance**: Solving equations, performing calculations, and explaining mathematical concepts.