File size: 8,599 Bytes
8f7a6a7
 
 
 
 
 
e74ce2c
 
bd2cd93
 
 
 
 
 
 
 
40e1c73
235e63f
21967bc
 
d90747a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25ac3f0
d90747a
bd2cd93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: creativeml-openrail-m
language:
- en
base_model:
- prithivMLmods/Deepthink-Reasoning-7B
pipeline_tag: text-generation
library_name: transformers
tags:
- ollama
- llama-cpp
- code-solve
- algorithm
- codepy
- qwen_base
- 7b
- CoT
- deep-think
---
<pre align="center">
    .___                    __  .__    .__        __     ____________.    
  __| _/____   ____ _______/  |_|  |__ |__| ____ |  | __ \______  \_ |__  
 / __ |/ __ \_/ __ \\____ \   __\  |  \|  |/    \|  |/ /     /    /| __ \ 
/ /_/ \  ___/\  ___/|  |_> >  | |   Y  \  |   |  \    <     /    / | \_\ \
\____ |\___  >\___  >   __/|__| |___|  /__|___|  /__|_ \   /____/  |___  /
     \/    \/     \/|__|             \/        \/     \/               \/ 
</pre>

The **Deepthink-Reasoning-7B-GGUF** is a fine-tuned gguf version of the **Deepthink-Reasoning-7B** base model, designed for text generation tasks that require deep reasoning, logical structuring, and problem-solving. This model leverages its optimized architecture to provide accurate and contextually relevant outputs for complex queries, making it ideal for applications in education, programming, and creative writing. 

With its robust natural language processing capabilities, **Deepthink-Reasoning-7B-GGUF** excels in generating step-by-step solutions, creative content, and logical analyses. Its architecture integrates advanced understanding of both structured and unstructured data, ensuring precise text generation aligned with user inputs. 

- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. 

# **Run with Ollama [Ollama Run]**

Ollama makes running machine learning models simple and efficient. Follow these steps to set up and run your GGUF models quickly.

## Quick Start: Step-by-Step Guide

| Step | Description                                     | Command / Instructions                                                                                                                                   |
|------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | **Install Ollama 🦙**                          | Download Ollama from [https://ollama.com/download](https://ollama.com/download) and install it on your system.                                            |
| 2    | **Create Your Model File**                     | - Create a file named after your model, e.g., `metallama`.                                                                                               |
|      |                                                 | - Add the following line to specify the base model:                                                                                                      |
|      |                                                 |   ```bash                                                                                                                                               |
|      |                                                 |   FROM Llama-3.2-1B.F16.gguf                                                                                                                            |
|      |                                                 |   ```                                                                                                                                                   |
|      |                                                 | - Ensure the base model file is in the same directory.                                                                                                   |
| 3    | **Create and Patch the Model**                 | Run the following commands to create and verify your model:                                                                                             |
|      |                                                 | ```bash                                                                                                                                                 |
|      |                                                 | ollama create metallama -f ./metallama                                                                                                                  |
|      |                                                 | ollama list                                                                                                                                             |
|      |                                                 | ```                                                                                                                                                     |
| 4    | **Run the Model**                              | Use the following command to start your model:                                                                                                          |
|      |                                                 | ```bash                                                                                                                                                 |
|      |                                                 | ollama run metallama                                                                                                                                    |
|      |                                                 | ```                                                                                                                                                     |
| 5    | **Interact with the Model**                    | Once the model is running, interact with it:                                                                                                            |
|      |                                                 | ```plaintext                                                                                                                                             |
|      |                                                 | >>> Tell me about Space X.                                                                                                                              |
|      |                                                 | Space X, the private aerospace company founded by Elon Musk, is revolutionizing space exploration...                                                    |
|      |                                                 | ```                                                                                                                                                     |

# **Demo Start**

Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Deepthink-Reasoning-7B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Conclusion

With Ollama, running and interacting with models is seamless. Start experimenting today!