File size: 2,564 Bytes
c696a5e
 
 
 
 
 
 
 
0acab3b
c696a5e
 
0acab3b
c696a5e
 
0acab3b
c696a5e
 
 
 
 
 
 
 
 
 
 
fd21d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c696a5e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
widget:
- text: 'Kalamkari textile pattern, 4K'
  output:
    url: images/tp3.png
- text: 'Ikat textile pattern, 4K'
  output:
    url: images/tp4.png
- text: 'Floral textile pattern, 4K'
  output:
    url: images/tp5.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: textile pattern
license: apache-2.0
---
# Canopus-Textile-Patterns

<Gallery />


Image Processing Parameters 

| Parameter                 | Value  | Parameter                 | Value  |
|---------------------------|--------|---------------------------|--------|
| LR Scheduler              | constant | Noise Offset              | 0.03   |
| Optimizer                 | AdamW  | Multires Noise Discount   | 0.1    |
| Network Dim               | 64     | Multires Noise Iterations | 10     |
| Network Alpha             | 32     | Repeat                    | 30     |
| Epoch                     | 09     | Save Every N Epochs       | 1      |

Total Steps: 1080

## SETTING-UP

```py
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "-------------xxxxxxxxx----------",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
                    (or)
-----------------------------------------------------------
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    
    pipe.load_lora_weights("prithivMLmods/Canopus-Textile-Pattern-adp-LoRA", weight_name="Canopus-Textile-Pattern-adp-LoRA.safetensors", adapter_name="tpl")
    pipe.set_adapters("tpl")
    pipe.to("cuda")
```


## Trigger prompts

    Kalamkari textile pattern, 4K


    Ikat textile pattern, 4K


    Floral textile pattern, 4K


| Parameter       | Value                                                                                 |
|-----------------|---------------------------------------------------------------------------------------|
| Prompt          |  Floral textile pattern, 4K  |
| Sampler         | euler                                                                                 |

## Trigger words

You should use `textile pattern` to trigger the image generation.


## Download model

Weights for this model are available in Safetensors format.

[Download](/prithivMLmods/Canopus-Textile-Pattern-adp-LoRA/tree/main) them in the Files & versions tab.