File size: 8,250 Bytes
3de86a7
 
 
 
 
131175f
3de86a7
 
 
 
 
 
 
0e74191
438c724
e19a66f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0303ea1
a8ccc84
0303ea1
b56370e
0303ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8ccc84
0303ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e19a66f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct-1M
pipeline_tag: text-generation
library_name: transformers
tags:
- qwen
- cot
- chain_of_thought
- qwen2.5
- text-generation-inference
- coco
model-index:
- name: COCO-7B-Instruct-1M
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 47.43
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCOCO-7B-Instruct-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 34.68
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCOCO-7B-Instruct-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 30.29
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCOCO-7B-Instruct-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.72
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCOCO-7B-Instruct-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 13.51
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCOCO-7B-Instruct-1M
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 35.4
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCOCO-7B-Instruct-1M
      name: Open LLM Leaderboard
---
# **COCO-7B-Instruct 1M [chain of continuesness]**  

COCO-7B-Instruct `[ chain of continuesness ]` is based on a 7B-parameter architecture, optimized for instruction-following tasks and advanced reasoning capabilities. Fine-tuned on a diverse set of datasets and leveraging chain-of-thought (CoT) reasoning, it excels in understanding contexts, solving mathematical problems, and generating detailed, structured responses. Its lightweight architecture ensures efficiency while maintaining performance, making it suitable for applications requiring logical reasoning, concise explanations, and multi-step problem-solving.  

Key improvements include:  
1. **Enhanced Instruction Following**: This model is designed to precisely follow complex instructions and generate coherent, concise outputs, even for nuanced or multi-layered prompts.  
2. **Optimized Reasoning Capabilities**: Improved reasoning for mathematical problem-solving, logical deduction, and critical thinking, supported by CoT methodologies.  
3. **Lightweight Efficiency**: With only 7B parameters, it requires fewer computational resources than larger models while maintaining competitive performance.  
4. **Context and Structure**: Exceptional at handling structured data inputs like tables and JSON, generating well-organized outputs ideal for practical applications.  
5. **Extended Content Generation**: Generates up to 4K tokens in a single response, allowing for efficient long-form content generation.  
6. **Multilingual Proficiency**: Supports 15 languages, including English, Spanish, French, German, Italian, Portuguese, and others, enabling global accessibility.  

# **Quickstart with transformers**

Below is a code snippet demonstrating how to load the tokenizer and model for content generation:  

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/COCO-7B-Instruct-1M"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What are the key features of large language models?"
messages = [
    {"role": "system", "content": "You are COCO, a helpful and concise assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=256
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```  

# **Intended Use**  

1. **Instruction-Following**:  
   Ideal for tasks requiring detailed responses, precise reasoning, and clear communication in an instruction-following format.  

2. **Reasoning and Problem-Solving**:  
   Capable of handling logical reasoning, context understanding, and multi-step problem-solving tasks with accuracy.  

3. **Code Generation**:  
   Suitable for coding tasks such as writing, debugging, and optimizing code in popular programming languages.  

4. **Data Analysis**:  
   Specialized in processing structured data (tables, JSON) and generating structured outputs for workflows.  

5. **Multilingual Accessibility**:  
   Enables global use cases, such as content creation, translation, and multilingual chatbots.  

6. **Content Generation**:  
   Designed to generate informative and long-form content such as reports, articles, or guides in a clear, concise format.  

# **Limitations**  

1. **Hardware Efficiency**:  
   While optimized for smaller resources compared to larger models, it still benefits from high-memory GPUs for faster inference.  

2. **Limited Multilingual Depth**:  
   Though proficient in 15 languages, performance may vary for less-resourced languages.  

3. **Creative Writing Challenges**:  
   May produce inconsistent results in highly subjective or creative tasks, such as storytelling.  

4. **Prompt Dependency**:  
   Like most models, its performance depends heavily on the quality of the input prompt.  

5. **Long-Context Constraints**:  
   Supports up to 4K tokens in output, which is shorter compared to larger models.  

6. **Training Cutoff Awareness**:  
   Does not have real-time knowledge of events beyond its training data, which may limit its response to recent information.  
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__COCO-7B-Instruct-1M-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FCOCO-7B-Instruct-1M&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    28.17|
|IFEval (0-Shot)    |    47.43|
|BBH (3-Shot)       |    34.68|
|MATH Lvl 5 (4-Shot)|    30.29|
|GPQA (0-shot)      |     7.72|
|MuSR (0-shot)      |    13.51|
|MMLU-PRO (5-shot)  |    35.40|