SentenceTransformer based on pritamdeka/assamese-bert-nli-v2

This is a sentence-transformers model finetuned from pritamdeka/assamese-bert-nli-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: pritamdeka/assamese-bert-nli-v2
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pritamdeka/assamese-bert-nli-v2-assamese-sts")
# Run inference
sentences = [
    'ইণ্টাৰনেট কেমেৰাৰ জৰিয়তে এগৰাকী ছোৱালীৰ লগত কথা পাতিলে মানুহজনে।',
    'ৱেবকেমৰ জৰিয়তে এগৰাকী ছোৱালীৰ সৈতে কথা পাতিছে এজন কিশোৰে।',
    'এজন মানুহে গীটাৰ বজাই আছে।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8582
spearman_cosine 0.8559
pearson_manhattan 0.8402
spearman_manhattan 0.8467
pearson_euclidean 0.8402
spearman_euclidean 0.8469
pearson_dot 0.8294
spearman_dot 0.8279
pearson_max 0.8582
spearman_max 0.8559

Semantic Similarity

Metric Value
pearson_cosine 0.8231
spearman_cosine 0.8235
pearson_manhattan 0.8131
spearman_manhattan 0.817
pearson_euclidean 0.8133
spearman_euclidean 0.817
pearson_dot 0.7897
spearman_dot 0.7871
pearson_max 0.8231
spearman_max 0.8235

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss pritamdeka/stsb-assamese-translated-dev_spearman_cosine pritamdeka/stsb-assamese-translated-test_spearman_cosine
0.2778 100 0.0316 0.0274 0.8415 -
0.5556 200 0.0306 0.0280 0.8392 -
0.8333 300 0.0282 0.0280 0.8462 -
1.1111 400 0.0208 0.0277 0.8482 -
1.3889 500 0.0148 0.0271 0.8494 -
1.6667 600 0.0136 0.0259 0.8503 -
1.9444 700 0.0137 0.0259 0.8525 -
2.2222 800 0.0089 0.0262 0.8519 -
2.5 900 0.0074 0.0255 0.8551 -
2.7778 1000 0.0071 0.0256 0.8544 -
3.0556 1100 0.0068 0.0258 0.8558 -
3.3333 1200 0.005 0.0253 0.8565 -
3.6111 1300 0.0046 0.0259 0.8547 -
3.8889 1400 0.0046 0.0257 0.8559 -
4.0 1440 - - - 0.8235

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
13
Safetensors
Model size
238M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pritamdeka/assamese-bert-nli-v2-assamese-sts

Finetuned
(2)
this model

Evaluation results

  • Pearson Cosine on pritamdeka/stsb assamese translated dev
    self-reported
    0.858
  • Spearman Cosine on pritamdeka/stsb assamese translated dev
    self-reported
    0.856
  • Pearson Manhattan on pritamdeka/stsb assamese translated dev
    self-reported
    0.840
  • Spearman Manhattan on pritamdeka/stsb assamese translated dev
    self-reported
    0.847
  • Pearson Euclidean on pritamdeka/stsb assamese translated dev
    self-reported
    0.840
  • Spearman Euclidean on pritamdeka/stsb assamese translated dev
    self-reported
    0.847
  • Pearson Dot on pritamdeka/stsb assamese translated dev
    self-reported
    0.829
  • Spearman Dot on pritamdeka/stsb assamese translated dev
    self-reported
    0.828
  • Pearson Max on pritamdeka/stsb assamese translated dev
    self-reported
    0.858
  • Spearman Max on pritamdeka/stsb assamese translated dev
    self-reported
    0.856