princeton-nlp
commited on
Commit
·
904c529
1
Parent(s):
c719685
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
license: apache-2.0
|
5 |
+
---
|
6 |
+
|
7 |
+
**Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788)
|
8 |
+
|
9 |
+
**Code**: https://github.com/princeton-nlp/AutoCompressors
|
10 |
+
|
11 |
+
**Models**:
|
12 |
+
- Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k)
|
13 |
+
- OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k)
|
14 |
+
- OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k)
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
RMT-1.3b-30k is a model fine-tuned from [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) following the RMT method as described in [Recurrent Memory Transformer](https://arxiv.org/abs/2207.06881) and [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788).
|
19 |
+
This model is fine-tuned on 2B tokens from Books3 in [The Pile](https://pile.eleuther.ai). The pre-trained OPT-1.3b model is fine-tuned on sequences of 30,720 tokens with 50 summary vectors, summary accumulation, randomized segmenting, and stop-gradients.
|
20 |
+
|
21 |
+
To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows:
|
22 |
+
|
23 |
+
```
|
24 |
+
from auto_compressor import AutoCompressorModel
|
25 |
+
|
26 |
+
model = AutoCompressorModel.from_pretrained("princeton-nlp/RMT-1.3b-30k")
|
27 |
+
```
|
28 |
+
|
29 |
+
**Evaluation**
|
30 |
+
|
31 |
+
We record the perplexity achieved by our 30k-fine-tuned OPT models on segments of 2,048 tokens sampled from Books3 and ArXiv in The Pile, conditioned on different amounts of context.
|
32 |
+
|
33 |
+
|
34 |
+
| Context Tokens | 0 |14,336 | 28,672 |
|
35 |
+
| -----------------------------|------|--------|--------|
|
36 |
+
| RMT-1.3b-30k | 13.18|12.50 |12.50 |
|
37 |
+
| AutoCompressor-1.3b-30k | 13.21|12.49 |12.47 |
|
38 |
+
| AutoCompressor-2.7b-30k | 11.86|11.21 |11.18 |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
## Bibtex
|
44 |
+
```
|
45 |
+
@misc{chevalier2023adapting,
|
46 |
+
title={Adapting Language Models to Compress Contexts},
|
47 |
+
author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen},
|
48 |
+
year={2023},
|
49 |
+
eprint={2305.14788},
|
50 |
+
archivePrefix={arXiv},
|
51 |
+
primaryClass={cs.CL}
|
52 |
+
}
|
53 |
+
```
|