princeton-nlp commited on
Commit
99fa759
1 Parent(s): c4420a2

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ license: apache-2.0
5
+ ---
6
+
7
+ **Paper**: [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788)
8
+
9
+ **Code**: https://github.com/princeton-nlp/AutoCompressors
10
+
11
+ **Models**:
12
+ - Llama-2-7b fine-tuned models: [AutoCompressor-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-Llama-2-7b-6k/), [FullAttention-Llama-2-7b-6k](https://huggingface.co/princeton-nlp/FullAttention-Llama-2-7b-6k)
13
+ - OPT-2.7b fine-tuned models: [AutoCompressor-2.7b-6k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-6k), [AutoCompressor-2.7b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-2.7b-30k), [RMT-2.7b-8k](https://huggingface.co/princeton-nlp/RMT-2.7b-8k), [FullAttention-2.7b-4k](https://huggingface.co/princeton-nlp/FullAttention-2.7b-4k)
14
+ - OPT-1.3b fine-tuned models: [AutoCompressor-1.3b-30k](https://huggingface.co/princeton-nlp/AutoCompressor-1.3b-30k), [RMT-1.3b-30k](https://huggingface.co/princeton-nlp/RMT-1.3b-30k)
15
+
16
+ ---
17
+
18
+ FullAttention-2.7b-4k is a model fine-tuned from [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) following the context window extension method described in [Adapting Language Models to Compress Contexts](https://arxiv.org/abs/2305.14788).
19
+ The 2,048 positional embeddings of the pre-trained OPT-2.7b are duplicated and the model is fine-tuned on sequences of 4,096 tokens from 2B tokens from [The Pile](https://pile.eleuther.ai).
20
+
21
+ To get started, download the [`AutoCompressor`](https://github.com/princeton-nlp/AutoCompressors) repository and load the model as follows:
22
+
23
+ ```
24
+ from auto_compressor import AutoCompressorModel
25
+
26
+ model = AutoCompressorModel.from_pretrained("princeton-nlp/FullAttention-2.7b-4k")
27
+ ```
28
+
29
+ **Evaluation**
30
+
31
+ We record the perplexity achieved by our OPT-2.7b models on segments of 2,048 tokens, conditioned on different amounts of context.
32
+ FullAttention-2.7-4k uses full uncompressed contexts whereas AutoCompressor-2.7b-6k and RMT-2.7b-8k compress segments of 2,048 tokens into 50 summary vectors.
33
+
34
+ *In-domain Evaluation*
35
+
36
+ | Context Tokens | 0 |512 | 2048 | 4096 | 6144 |
37
+ | -----------------------------|-----|-----|------|------|------|
38
+ | FullAttention-2.7b-4k | 6.57|6.15 |5.94 |- |- |
39
+ | RMT-2.7b-8k | 6.34|6.19 |6.02 | 6.02 | 6.01 |
40
+ | AutoCompressor-2.7b-6k | 6.31|6.04 | 5.98 | 5.94 | 5.93 |
41
+
42
+ *Out-of-domain Evaluation*
43
+
44
+ | Context Tokens | 0 |512 | 2048 | 4096 | 6144 |
45
+ | -----------------------------|-----|-----|------|------|------|
46
+ | FullAttention-2.7b-4k | 8.94|8.28 |7.93 |- |- |
47
+ | RMT-2.7b-8k | 8.62|8.44 |8.21 | 8.20 | 8.20 |
48
+ | AutoCompressor-2.7b-6k | 8.60|8.26 | 8.17 | 8.12 | 8.10 |
49
+
50
+
51
+ ## Bibtex
52
+ ```
53
+ @misc{chevalier2023adapting,
54
+ title={Adapting Language Models to Compress Contexts},
55
+ author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen},
56
+ year={2023},
57
+ eprint={2305.14788},
58
+ archivePrefix={arXiv},
59
+ primaryClass={cs.CL}
60
+ }
61
+ ```