File size: 2,269 Bytes
5cb784d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
license: llama2
---
# Tarsier Model Card
## Model details
**Model type:**
Tarsier-7b is one of the Tarsier family -- an open-source large-scale video-language models, which is designed to generate high-quality video descriptions, together with good capability of general video understanding (Tarsier-34b gains SOTA results on 6 open benchmarks). Base LLM: [liuhaotian/llava-v1.6-vicuna-7b](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b)
**Model date:**
Tarsier-7b was trained in June 2024.
**Paper or resources for more information:**
- github repo: https://github.com/bytedance/tarsier
- paper link: https://arxiv.org/abs/2407.00634
## License
lmsys/vicuna-7b-v1.5 license.
**Where to send questions or comments about the model:**
https://github.com/bytedance/tarsier/issues
## Intended use
**Primary intended uses:**
The primary use of Tarsier is research on large multimodal models, especially video description.
**Primary intended users:**
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
## Training dataset
Tarsier tasks a two-stage training strategy.
- Stage-1: Multi-task Pre-training on 13M data
- Stage-2: Multi-grained Instruction Tuning on 500K data
In both stages, we freeze ViT and train all the parameters of projection layer and LLM.
## Evaluation dataset
- A challenging video desription dataset: [DREAM-1K](https://huggingface.co/datasets/omni-research/DREAM-1K)
- Multi-choice VQA: [MVBench](https://huggingface.co/datasets/OpenGVLab/MVBench), [NeXT-QA](https://github.com/doc-doc/NExT-QA) and [Egoschema](https://drive.google.com/drive/folders/1SS0VVz8rML1e5gWq7D7VtP1oxE2UtmhQ)
- Open-ended VQA: [MSVD-QA](https://opendatalab.com/OpenDataLab/MSVD), [MSR-VTT-QA](https://opendatalab.com/OpenDataLab/MSR-VTT), [ActivityNet-QA](https://github.com/MILVLG/activitynet-qa) and [TGIF-QA](https://opendatalab.com/OpenDataLab/TGIF-QA)
- Video Caption: [MSVD-Caption](https://opendatalab.com/OpenDataLab/MSVD), [MSRVTT-Caption](https://opendatalab.com/OpenDataLab/MSR-VTT), [VATEX](https://eric-xw.github.io/vatex-website/about.html)
## How to Use
see https://github.com/bytedance/tarsier?tab=readme-ov-file#usage
|