File size: 4,296 Bytes
4b0c63c
6166776
 
 
 
 
cb4dd49
4b0c63c
c1d0723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f334f8
 
 
307657a
78b3da1
935d461
c1d0723
 
 
 
 
 
 
 
 
 
 
 
 
935d461
 
ead395e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
935d461
 
 
 
 
d8c89d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
935d461
d8c89d5
935d461
d8c89d5
935d461
d8c89d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
language:
- de
library_name: transformers
pipeline_tag: automatic-speech-recognition
new_version: primeline/whisper-tiny-german-1224
---

# whisper-tiny-german

This model is a German Speech Recognition model based on the [whisper-tiny](https://huggingface.co/openai/whisper-tiny) model.
The model weights count 37.8M parameters and with a size of 73MB in bfloat16 format.

As a follow-up to the [Whisper large v3 german](https://huggingface.co/primeline/whisper-large-v3-german) we decided to create a tiny version to be used in edge cases where the model size is a concern.

## Intended uses & limitations

The model is intended to be used for German speech recognition tasks.
It is designed to be used for edge cases where the model size is a concern.
It's not recommended to use this model for critical use cases, as it is a tiny model and may not perform well in all scenarios.

## Dataset

The dataset used for training is a filtered subset of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset, multilingual librispeech and some internal data.
The data was filtered and double checked for quality and correctness.
We did some normalization to the text data, especially for casing and punctuation.


## Model family

| Model                            | Parameters | link                                                         |
|----------------------------------|------------|--------------------------------------------------------------|
| Whisper large v3 german          | 1.54B      | [link](https://huggingface.co/primeline/whisper-large-v3-german) |
| Whisper large v3 turbo german    | 809M       | [link](https://huggingface.co/primeline/whisper-large-v3-turbo-german)
| Distil-whisper large v3 german   | 756M       | [link](https://huggingface.co/primeline/distil-whisper-large-v3-german) |
| tiny whisper                     | 37.8M      | [link](https://huggingface.co/primeline/whisper-tiny-german) |

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- total_train_batch_size: 512
- num_epochs: 5.0

### Framework versions

- Transformers 4.39.3
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.18.0
- Tokenizers 0.15.2


### How to use

```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "primeline/whisper-tiny-german"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=16,
    return_timestamps=True,
    torch_dtype=torch_dtype,
    device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```

## [About us](https://primeline-ai.com/en/)

[![primeline AI](https://primeline-ai.com/wp-content/uploads/2024/02/pl_ai_bildwortmarke_original.svg)](https://primeline-ai.com/en/)


Your partner for AI infrastructure in Germany

Experience the powerful AI infrastructure that drives your ambitions in Deep Learning, Machine Learning & High-Performance Computing. 

Optimized for AI training and inference.



Model author: [Florian Zimmermeister](https://huggingface.co/flozi00)

**Disclaimer**

```
This model is not a product of the primeLine Group. 

It represents research conducted by [Florian Zimmermeister](https://huggingface.co/flozi00), with computing power sponsored by primeLine. 

The model is published under this account by primeLine, but it is not a commercial product of primeLine Solutions GmbH.

Please be aware that while we have tested and developed this model to the best of our abilities, errors may still occur. 

Use of this model is at your own risk. We do not accept liability for any incorrect outputs generated by this model.
```