File size: 4,296 Bytes
4b0c63c 6166776 cb4dd49 4b0c63c c1d0723 5f334f8 307657a 78b3da1 935d461 c1d0723 935d461 ead395e 935d461 d8c89d5 935d461 d8c89d5 935d461 d8c89d5 935d461 d8c89d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
license: apache-2.0
language:
- de
library_name: transformers
pipeline_tag: automatic-speech-recognition
new_version: primeline/whisper-tiny-german-1224
---
# whisper-tiny-german
This model is a German Speech Recognition model based on the [whisper-tiny](https://huggingface.co/openai/whisper-tiny) model.
The model weights count 37.8M parameters and with a size of 73MB in bfloat16 format.
As a follow-up to the [Whisper large v3 german](https://huggingface.co/primeline/whisper-large-v3-german) we decided to create a tiny version to be used in edge cases where the model size is a concern.
## Intended uses & limitations
The model is intended to be used for German speech recognition tasks.
It is designed to be used for edge cases where the model size is a concern.
It's not recommended to use this model for critical use cases, as it is a tiny model and may not perform well in all scenarios.
## Dataset
The dataset used for training is a filtered subset of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset, multilingual librispeech and some internal data.
The data was filtered and double checked for quality and correctness.
We did some normalization to the text data, especially for casing and punctuation.
## Model family
| Model | Parameters | link |
|----------------------------------|------------|--------------------------------------------------------------|
| Whisper large v3 german | 1.54B | [link](https://huggingface.co/primeline/whisper-large-v3-german) |
| Whisper large v3 turbo german | 809M | [link](https://huggingface.co/primeline/whisper-large-v3-turbo-german)
| Distil-whisper large v3 german | 756M | [link](https://huggingface.co/primeline/distil-whisper-large-v3-german) |
| tiny whisper | 37.8M | [link](https://huggingface.co/primeline/whisper-tiny-german) |
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- total_train_batch_size: 512
- num_epochs: 5.0
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.18.0
- Tokenizers 0.15.2
### How to use
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "primeline/whisper-tiny-german"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```
## [About us](https://primeline-ai.com/en/)
[![primeline AI](https://primeline-ai.com/wp-content/uploads/2024/02/pl_ai_bildwortmarke_original.svg)](https://primeline-ai.com/en/)
Your partner for AI infrastructure in Germany
Experience the powerful AI infrastructure that drives your ambitions in Deep Learning, Machine Learning & High-Performance Computing.
Optimized for AI training and inference.
Model author: [Florian Zimmermeister](https://huggingface.co/flozi00)
**Disclaimer**
```
This model is not a product of the primeLine Group.
It represents research conducted by [Florian Zimmermeister](https://huggingface.co/flozi00), with computing power sponsored by primeLine.
The model is published under this account by primeLine, but it is not a commercial product of primeLine Solutions GmbH.
Please be aware that while we have tested and developed this model to the best of our abilities, errors may still occur.
Use of this model is at your own risk. We do not accept liability for any incorrect outputs generated by this model.
``` |