|
import copy |
|
import os |
|
import unittest |
|
|
|
import torch |
|
from trainer.logging.tensorboard_logger import TensorboardLogger |
|
|
|
from tests import assertHasAttr, assertHasNotAttr, get_tests_data_path, get_tests_input_path, get_tests_output_path |
|
from TTS.config import load_config |
|
from TTS.encoder.utils.generic_utils import setup_encoder_model |
|
from TTS.tts.configs.vits_config import VitsConfig |
|
from TTS.tts.models.vits import ( |
|
Vits, |
|
VitsArgs, |
|
VitsAudioConfig, |
|
amp_to_db, |
|
db_to_amp, |
|
load_audio, |
|
spec_to_mel, |
|
wav_to_mel, |
|
wav_to_spec, |
|
) |
|
from TTS.tts.utils.speakers import SpeakerManager |
|
|
|
LANG_FILE = os.path.join(get_tests_input_path(), "language_ids.json") |
|
SPEAKER_ENCODER_CONFIG = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") |
|
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") |
|
|
|
|
|
torch.manual_seed(1) |
|
use_cuda = torch.cuda.is_available() |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
|
|
class TestVits(unittest.TestCase): |
|
def test_load_audio(self): |
|
wav, sr = load_audio(WAV_FILE) |
|
self.assertEqual(wav.shape, (1, 41885)) |
|
self.assertEqual(sr, 22050) |
|
|
|
spec = wav_to_spec(wav, n_fft=1024, hop_length=512, win_length=1024, center=False) |
|
mel = wav_to_mel( |
|
wav, |
|
n_fft=1024, |
|
num_mels=80, |
|
sample_rate=sr, |
|
hop_length=512, |
|
win_length=1024, |
|
fmin=0, |
|
fmax=8000, |
|
center=False, |
|
) |
|
mel2 = spec_to_mel(spec, n_fft=1024, num_mels=80, sample_rate=sr, fmin=0, fmax=8000) |
|
|
|
self.assertEqual((mel - mel2).abs().max(), 0) |
|
self.assertEqual(spec.shape[0], mel.shape[0]) |
|
self.assertEqual(spec.shape[2], mel.shape[2]) |
|
|
|
spec_db = amp_to_db(spec) |
|
spec_amp = db_to_amp(spec_db) |
|
|
|
self.assertAlmostEqual((spec - spec_amp).abs().max(), 0, delta=1e-4) |
|
|
|
def test_dataset(self): |
|
"""TODO:""" |
|
... |
|
|
|
def test_init_multispeaker(self): |
|
num_speakers = 10 |
|
args = VitsArgs(num_speakers=num_speakers, use_speaker_embedding=True) |
|
model = Vits(args) |
|
assertHasAttr(self, model, "emb_g") |
|
|
|
args = VitsArgs(num_speakers=0, use_speaker_embedding=True) |
|
model = Vits(args) |
|
assertHasNotAttr(self, model, "emb_g") |
|
|
|
args = VitsArgs(num_speakers=10, use_speaker_embedding=False) |
|
model = Vits(args) |
|
assertHasNotAttr(self, model, "emb_g") |
|
|
|
args = VitsArgs(d_vector_dim=101, use_d_vector_file=True) |
|
model = Vits(args) |
|
self.assertEqual(model.embedded_speaker_dim, 101) |
|
|
|
def test_init_multilingual(self): |
|
args = VitsArgs(language_ids_file=None, use_language_embedding=False) |
|
model = Vits(args) |
|
self.assertEqual(model.language_manager, None) |
|
self.assertEqual(model.embedded_language_dim, 0) |
|
assertHasNotAttr(self, model, "emb_l") |
|
|
|
args = VitsArgs(language_ids_file=LANG_FILE) |
|
model = Vits(args) |
|
self.assertNotEqual(model.language_manager, None) |
|
self.assertEqual(model.embedded_language_dim, 0) |
|
assertHasNotAttr(self, model, "emb_l") |
|
|
|
args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True) |
|
model = Vits(args) |
|
self.assertNotEqual(model.language_manager, None) |
|
self.assertEqual(model.embedded_language_dim, args.embedded_language_dim) |
|
assertHasAttr(self, model, "emb_l") |
|
|
|
args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True, embedded_language_dim=102) |
|
model = Vits(args) |
|
self.assertNotEqual(model.language_manager, None) |
|
self.assertEqual(model.embedded_language_dim, args.embedded_language_dim) |
|
assertHasAttr(self, model, "emb_l") |
|
|
|
def test_get_aux_input(self): |
|
aux_input = {"speaker_ids": None, "style_wav": None, "d_vectors": None, "language_ids": None} |
|
args = VitsArgs() |
|
model = Vits(args) |
|
aux_out = model.get_aux_input(aux_input) |
|
|
|
speaker_id = torch.randint(10, (1,)) |
|
language_id = torch.randint(10, (1,)) |
|
d_vector = torch.rand(1, 128) |
|
aux_input = {"speaker_ids": speaker_id, "style_wav": None, "d_vectors": d_vector, "language_ids": language_id} |
|
aux_out = model.get_aux_input(aux_input) |
|
self.assertEqual(aux_out["speaker_ids"].shape, speaker_id.shape) |
|
self.assertEqual(aux_out["language_ids"].shape, language_id.shape) |
|
self.assertEqual(aux_out["d_vectors"].shape, d_vector.unsqueeze(0).transpose(2, 1).shape) |
|
|
|
def test_voice_conversion(self): |
|
num_speakers = 10 |
|
spec_len = 101 |
|
spec_effective_len = 50 |
|
|
|
args = VitsArgs(num_speakers=num_speakers, use_speaker_embedding=True) |
|
model = Vits(args) |
|
|
|
ref_inp = torch.randn(1, 513, spec_len) |
|
ref_inp_len = torch.randint(1, spec_effective_len, (1,)) |
|
ref_spk_id = torch.randint(1, num_speakers, (1,)).item() |
|
tgt_spk_id = torch.randint(1, num_speakers, (1,)).item() |
|
o_hat, y_mask, (z, z_p, z_hat) = model.voice_conversion(ref_inp, ref_inp_len, ref_spk_id, tgt_spk_id) |
|
|
|
self.assertEqual(o_hat.shape, (1, 1, spec_len * 256)) |
|
self.assertEqual(y_mask.shape, (1, 1, spec_len)) |
|
self.assertEqual(y_mask.sum(), ref_inp_len[0]) |
|
self.assertEqual(z.shape, (1, args.hidden_channels, spec_len)) |
|
self.assertEqual(z_p.shape, (1, args.hidden_channels, spec_len)) |
|
self.assertEqual(z_hat.shape, (1, args.hidden_channels, spec_len)) |
|
|
|
def _create_inputs(self, config, batch_size=2): |
|
input_dummy = torch.randint(0, 24, (batch_size, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 129, (batch_size,)).long().to(device) |
|
input_lengths[-1] = 128 |
|
spec = torch.rand(batch_size, config.audio["fft_size"] // 2 + 1, 30).to(device) |
|
mel = torch.rand(batch_size, config.audio["num_mels"], 30).to(device) |
|
spec_lengths = torch.randint(20, 30, (batch_size,)).long().to(device) |
|
spec_lengths[-1] = spec.size(2) |
|
waveform = torch.rand(batch_size, 1, spec.size(2) * config.audio["hop_length"]).to(device) |
|
return input_dummy, input_lengths, mel, spec, spec_lengths, waveform |
|
|
|
def _check_forward_outputs(self, config, output_dict, encoder_config=None, batch_size=2): |
|
self.assertEqual( |
|
output_dict["model_outputs"].shape[2], config.model_args.spec_segment_size * config.audio["hop_length"] |
|
) |
|
self.assertEqual(output_dict["alignments"].shape, (batch_size, 128, 30)) |
|
self.assertEqual(output_dict["alignments"].max(), 1) |
|
self.assertEqual(output_dict["alignments"].min(), 0) |
|
self.assertEqual(output_dict["z"].shape, (batch_size, config.model_args.hidden_channels, 30)) |
|
self.assertEqual(output_dict["z_p"].shape, (batch_size, config.model_args.hidden_channels, 30)) |
|
self.assertEqual(output_dict["m_p"].shape, (batch_size, config.model_args.hidden_channels, 30)) |
|
self.assertEqual(output_dict["logs_p"].shape, (batch_size, config.model_args.hidden_channels, 30)) |
|
self.assertEqual(output_dict["m_q"].shape, (batch_size, config.model_args.hidden_channels, 30)) |
|
self.assertEqual(output_dict["logs_q"].shape, (batch_size, config.model_args.hidden_channels, 30)) |
|
self.assertEqual( |
|
output_dict["waveform_seg"].shape[2], config.model_args.spec_segment_size * config.audio["hop_length"] |
|
) |
|
if encoder_config: |
|
self.assertEqual(output_dict["gt_spk_emb"].shape, (batch_size, encoder_config.model_params["proj_dim"])) |
|
self.assertEqual(output_dict["syn_spk_emb"].shape, (batch_size, encoder_config.model_params["proj_dim"])) |
|
else: |
|
self.assertEqual(output_dict["gt_spk_emb"], None) |
|
self.assertEqual(output_dict["syn_spk_emb"], None) |
|
|
|
def test_forward(self): |
|
num_speakers = 0 |
|
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) |
|
config.model_args.spec_segment_size = 10 |
|
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config) |
|
model = Vits(config).to(device) |
|
output_dict = model.forward(input_dummy, input_lengths, spec, spec_lengths, waveform) |
|
self._check_forward_outputs(config, output_dict) |
|
|
|
def test_multispeaker_forward(self): |
|
num_speakers = 10 |
|
|
|
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) |
|
config.model_args.spec_segment_size = 10 |
|
|
|
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config) |
|
speaker_ids = torch.randint(0, num_speakers, (8,)).long().to(device) |
|
|
|
model = Vits(config).to(device) |
|
output_dict = model.forward( |
|
input_dummy, input_lengths, spec, spec_lengths, waveform, aux_input={"speaker_ids": speaker_ids} |
|
) |
|
self._check_forward_outputs(config, output_dict) |
|
|
|
def test_d_vector_forward(self): |
|
batch_size = 2 |
|
args = VitsArgs( |
|
spec_segment_size=10, |
|
num_chars=32, |
|
use_d_vector_file=True, |
|
d_vector_dim=256, |
|
d_vector_file=[os.path.join(get_tests_data_path(), "dummy_speakers.json")], |
|
) |
|
config = VitsConfig(model_args=args) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
model.train() |
|
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config, batch_size=batch_size) |
|
d_vectors = torch.randn(batch_size, 256).to(device) |
|
output_dict = model.forward( |
|
input_dummy, input_lengths, spec, spec_lengths, waveform, aux_input={"d_vectors": d_vectors} |
|
) |
|
self._check_forward_outputs(config, output_dict) |
|
|
|
def test_multilingual_forward(self): |
|
num_speakers = 10 |
|
num_langs = 3 |
|
batch_size = 2 |
|
|
|
args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True, spec_segment_size=10) |
|
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True, model_args=args) |
|
|
|
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config, batch_size=batch_size) |
|
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) |
|
lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) |
|
|
|
model = Vits(config).to(device) |
|
output_dict = model.forward( |
|
input_dummy, |
|
input_lengths, |
|
spec, |
|
spec_lengths, |
|
waveform, |
|
aux_input={"speaker_ids": speaker_ids, "language_ids": lang_ids}, |
|
) |
|
self._check_forward_outputs(config, output_dict) |
|
|
|
def test_secl_forward(self): |
|
num_speakers = 10 |
|
num_langs = 3 |
|
batch_size = 2 |
|
|
|
speaker_encoder_config = load_config(SPEAKER_ENCODER_CONFIG) |
|
speaker_encoder_config.model_params["use_torch_spec"] = True |
|
speaker_encoder = setup_encoder_model(speaker_encoder_config).to(device) |
|
speaker_manager = SpeakerManager() |
|
speaker_manager.encoder = speaker_encoder |
|
|
|
args = VitsArgs( |
|
language_ids_file=LANG_FILE, |
|
use_language_embedding=True, |
|
spec_segment_size=10, |
|
use_speaker_encoder_as_loss=True, |
|
) |
|
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True, model_args=args) |
|
config.audio.sample_rate = 16000 |
|
|
|
input_dummy, input_lengths, _, spec, spec_lengths, waveform = self._create_inputs(config, batch_size=batch_size) |
|
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) |
|
lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) |
|
|
|
model = Vits(config, speaker_manager=speaker_manager).to(device) |
|
output_dict = model.forward( |
|
input_dummy, |
|
input_lengths, |
|
spec, |
|
spec_lengths, |
|
waveform, |
|
aux_input={"speaker_ids": speaker_ids, "language_ids": lang_ids}, |
|
) |
|
self._check_forward_outputs(config, output_dict, speaker_encoder_config) |
|
|
|
def _check_inference_outputs(self, config, outputs, input_dummy, batch_size=1): |
|
feat_len = outputs["z"].shape[2] |
|
self.assertEqual(outputs["model_outputs"].shape[:2], (batch_size, 1)) |
|
self.assertEqual(outputs["alignments"].shape, (batch_size, input_dummy.shape[1], feat_len)) |
|
self.assertEqual(outputs["z"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) |
|
self.assertEqual(outputs["z_p"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) |
|
self.assertEqual(outputs["m_p"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) |
|
self.assertEqual(outputs["logs_p"].shape, (batch_size, config.model_args.hidden_channels, feat_len)) |
|
|
|
def test_inference(self): |
|
num_speakers = 0 |
|
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) |
|
model = Vits(config).to(device) |
|
|
|
batch_size = 1 |
|
input_dummy, *_ = self._create_inputs(config, batch_size=batch_size) |
|
outputs = model.inference(input_dummy) |
|
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) |
|
|
|
batch_size = 2 |
|
input_dummy, input_lengths, *_ = self._create_inputs(config, batch_size=batch_size) |
|
outputs = model.inference(input_dummy, aux_input={"x_lengths": input_lengths}) |
|
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) |
|
|
|
def test_multispeaker_inference(self): |
|
num_speakers = 10 |
|
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True) |
|
model = Vits(config).to(device) |
|
|
|
batch_size = 1 |
|
input_dummy, *_ = self._create_inputs(config, batch_size=batch_size) |
|
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) |
|
outputs = model.inference(input_dummy, {"speaker_ids": speaker_ids}) |
|
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) |
|
|
|
batch_size = 2 |
|
input_dummy, input_lengths, *_ = self._create_inputs(config, batch_size=batch_size) |
|
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) |
|
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids}) |
|
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) |
|
|
|
def test_multilingual_inference(self): |
|
num_speakers = 10 |
|
num_langs = 3 |
|
args = VitsArgs(language_ids_file=LANG_FILE, use_language_embedding=True, spec_segment_size=10) |
|
config = VitsConfig(num_speakers=num_speakers, use_speaker_embedding=True, model_args=args) |
|
model = Vits(config).to(device) |
|
|
|
input_dummy = torch.randint(0, 24, (1, 128)).long().to(device) |
|
speaker_ids = torch.randint(0, num_speakers, (1,)).long().to(device) |
|
lang_ids = torch.randint(0, num_langs, (1,)).long().to(device) |
|
_ = model.inference(input_dummy, {"speaker_ids": speaker_ids, "language_ids": lang_ids}) |
|
|
|
batch_size = 1 |
|
input_dummy, *_ = self._create_inputs(config, batch_size=batch_size) |
|
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) |
|
lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) |
|
outputs = model.inference(input_dummy, {"speaker_ids": speaker_ids, "language_ids": lang_ids}) |
|
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) |
|
|
|
batch_size = 2 |
|
input_dummy, input_lengths, *_ = self._create_inputs(config, batch_size=batch_size) |
|
speaker_ids = torch.randint(0, num_speakers, (batch_size,)).long().to(device) |
|
lang_ids = torch.randint(0, num_langs, (batch_size,)).long().to(device) |
|
outputs = model.inference( |
|
input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids, "language_ids": lang_ids} |
|
) |
|
self._check_inference_outputs(config, outputs, input_dummy, batch_size=batch_size) |
|
|
|
def test_d_vector_inference(self): |
|
args = VitsArgs( |
|
spec_segment_size=10, |
|
num_chars=32, |
|
use_d_vector_file=True, |
|
d_vector_dim=256, |
|
d_vector_file=[os.path.join(get_tests_data_path(), "dummy_speakers.json")], |
|
) |
|
config = VitsConfig(model_args=args) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
model.eval() |
|
|
|
input_dummy = torch.randint(0, 24, (1, 128)).long().to(device) |
|
d_vectors = torch.randn(1, 256).to(device) |
|
outputs = model.inference(input_dummy, aux_input={"d_vectors": d_vectors}) |
|
self._check_inference_outputs(config, outputs, input_dummy) |
|
|
|
input_dummy, input_lengths, *_ = self._create_inputs(config) |
|
d_vectors = torch.randn(2, 256).to(device) |
|
outputs = model.inference(input_dummy, aux_input={"x_lengths": input_lengths, "d_vectors": d_vectors}) |
|
self._check_inference_outputs(config, outputs, input_dummy, batch_size=2) |
|
|
|
@staticmethod |
|
def _check_parameter_changes(model, model_ref): |
|
count = 0 |
|
for item1, item2 in zip(model.named_parameters(), model_ref.named_parameters()): |
|
name = item1[0] |
|
param = item1[1] |
|
param_ref = item2[1] |
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
name, param.shape, param, param_ref |
|
) |
|
count = count + 1 |
|
|
|
def _create_batch(self, config, batch_size): |
|
input_dummy, input_lengths, mel, spec, mel_lengths, _ = self._create_inputs(config, batch_size) |
|
batch = {} |
|
batch["tokens"] = input_dummy |
|
batch["token_lens"] = input_lengths |
|
batch["spec_lens"] = mel_lengths |
|
batch["mel_lens"] = mel_lengths |
|
batch["spec"] = spec |
|
batch["mel"] = mel |
|
batch["waveform"] = torch.rand(batch_size, 1, config.audio["sample_rate"] * 10).to(device) |
|
batch["d_vectors"] = None |
|
batch["speaker_ids"] = None |
|
batch["language_ids"] = None |
|
return batch |
|
|
|
def test_train_step(self): |
|
|
|
with torch.autograd.set_detect_anomaly(True): |
|
config = VitsConfig(model_args=VitsArgs(num_chars=32, spec_segment_size=10)) |
|
model = Vits(config).to(device) |
|
model.train() |
|
|
|
optimizers = model.get_optimizer() |
|
criterions = model.get_criterion() |
|
criterions = [criterions[0].to(device), criterions[1].to(device)] |
|
|
|
model_ref = Vits(config).to(device) |
|
|
|
model_ref.load_state_dict(copy.deepcopy(model.state_dict())) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count = count + 1 |
|
for _ in range(5): |
|
batch = self._create_batch(config, 2) |
|
for idx in [0, 1]: |
|
outputs, loss_dict = model.train_step(batch, criterions, idx) |
|
self.assertFalse(not outputs) |
|
self.assertFalse(not loss_dict) |
|
loss_dict["loss"].backward() |
|
optimizers[idx].step() |
|
optimizers[idx].zero_grad() |
|
|
|
|
|
self._check_parameter_changes(model, model_ref) |
|
|
|
def test_train_step_upsampling(self): |
|
"""Upsampling by the decoder upsampling layers""" |
|
|
|
with torch.autograd.set_detect_anomaly(True): |
|
audio_config = VitsAudioConfig(sample_rate=22050) |
|
model_args = VitsArgs( |
|
num_chars=32, |
|
spec_segment_size=10, |
|
encoder_sample_rate=11025, |
|
interpolate_z=False, |
|
upsample_rates_decoder=[8, 8, 4, 2], |
|
) |
|
config = VitsConfig(model_args=model_args, audio=audio_config) |
|
model = Vits(config).to(device) |
|
model.train() |
|
|
|
optimizers = model.get_optimizer() |
|
criterions = model.get_criterion() |
|
criterions = [criterions[0].to(device), criterions[1].to(device)] |
|
|
|
model_ref = Vits(config).to(device) |
|
|
|
model_ref.load_state_dict(copy.deepcopy(model.state_dict())) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count = count + 1 |
|
for _ in range(5): |
|
batch = self._create_batch(config, 2) |
|
for idx in [0, 1]: |
|
outputs, loss_dict = model.train_step(batch, criterions, idx) |
|
self.assertFalse(not outputs) |
|
self.assertFalse(not loss_dict) |
|
loss_dict["loss"].backward() |
|
optimizers[idx].step() |
|
optimizers[idx].zero_grad() |
|
|
|
|
|
self._check_parameter_changes(model, model_ref) |
|
|
|
def test_train_step_upsampling_interpolation(self): |
|
"""Upsampling by interpolation""" |
|
|
|
with torch.autograd.set_detect_anomaly(True): |
|
audio_config = VitsAudioConfig(sample_rate=22050) |
|
model_args = VitsArgs( |
|
num_chars=32, |
|
spec_segment_size=10, |
|
encoder_sample_rate=11025, |
|
interpolate_z=True, |
|
upsample_rates_decoder=[8, 8, 2, 2], |
|
) |
|
config = VitsConfig(model_args=model_args, audio=audio_config) |
|
model = Vits(config).to(device) |
|
model.train() |
|
|
|
optimizers = model.get_optimizer() |
|
criterions = model.get_criterion() |
|
criterions = [criterions[0].to(device), criterions[1].to(device)] |
|
|
|
model_ref = Vits(config).to(device) |
|
|
|
model_ref.load_state_dict(copy.deepcopy(model.state_dict())) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count = count + 1 |
|
for _ in range(5): |
|
batch = self._create_batch(config, 2) |
|
for idx in [0, 1]: |
|
outputs, loss_dict = model.train_step(batch, criterions, idx) |
|
self.assertFalse(not outputs) |
|
self.assertFalse(not loss_dict) |
|
loss_dict["loss"].backward() |
|
optimizers[idx].step() |
|
optimizers[idx].zero_grad() |
|
|
|
|
|
self._check_parameter_changes(model, model_ref) |
|
|
|
def test_train_eval_log(self): |
|
batch_size = 2 |
|
config = VitsConfig(model_args=VitsArgs(num_chars=32, spec_segment_size=10)) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
model.run_data_dep_init = False |
|
model.train() |
|
batch = self._create_batch(config, batch_size) |
|
logger = TensorboardLogger( |
|
log_dir=os.path.join(get_tests_output_path(), "dummy_vits_logs"), model_name="vits_test_train_log" |
|
) |
|
criterion = model.get_criterion() |
|
criterion = [criterion[0].to(device), criterion[1].to(device)] |
|
outputs = [None] * 2 |
|
outputs[0], _ = model.train_step(batch, criterion, 0) |
|
outputs[1], _ = model.train_step(batch, criterion, 1) |
|
model.train_log(batch, outputs, logger, None, 1) |
|
|
|
model.eval_log(batch, outputs, logger, None, 1) |
|
logger.finish() |
|
|
|
def test_test_run(self): |
|
config = VitsConfig(model_args=VitsArgs(num_chars=32)) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
model.run_data_dep_init = False |
|
model.eval() |
|
test_figures, test_audios = model.test_run(None) |
|
self.assertTrue(test_figures is not None) |
|
self.assertTrue(test_audios is not None) |
|
|
|
def test_load_checkpoint(self): |
|
chkp_path = os.path.join(get_tests_output_path(), "dummy_glow_tts_checkpoint.pth") |
|
config = VitsConfig(VitsArgs(num_chars=32)) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
chkp = {} |
|
chkp["model"] = model.state_dict() |
|
torch.save(chkp, chkp_path) |
|
model.load_checkpoint(config, chkp_path) |
|
self.assertTrue(model.training) |
|
model.load_checkpoint(config, chkp_path, eval=True) |
|
self.assertFalse(model.training) |
|
|
|
def test_get_criterion(self): |
|
config = VitsConfig(VitsArgs(num_chars=32)) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
criterion = model.get_criterion() |
|
self.assertTrue(criterion is not None) |
|
|
|
def test_init_from_config(self): |
|
config = VitsConfig(model_args=VitsArgs(num_chars=32)) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
|
|
config = VitsConfig(model_args=VitsArgs(num_chars=32, num_speakers=2)) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
self.assertTrue(not hasattr(model, "emb_g")) |
|
|
|
config = VitsConfig(model_args=VitsArgs(num_chars=32, num_speakers=2, use_speaker_embedding=True)) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
self.assertEqual(model.num_speakers, 2) |
|
self.assertTrue(hasattr(model, "emb_g")) |
|
|
|
config = VitsConfig( |
|
model_args=VitsArgs( |
|
num_chars=32, |
|
num_speakers=2, |
|
use_speaker_embedding=True, |
|
speakers_file=os.path.join(get_tests_data_path(), "ljspeech", "speakers.json"), |
|
) |
|
) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
self.assertEqual(model.num_speakers, 10) |
|
self.assertTrue(hasattr(model, "emb_g")) |
|
|
|
config = VitsConfig( |
|
model_args=VitsArgs( |
|
num_chars=32, |
|
use_d_vector_file=True, |
|
d_vector_dim=256, |
|
d_vector_file=[os.path.join(get_tests_data_path(), "dummy_speakers.json")], |
|
) |
|
) |
|
model = Vits.init_from_config(config, verbose=False).to(device) |
|
self.assertTrue(model.num_speakers == 1) |
|
self.assertTrue(not hasattr(model, "emb_g")) |
|
self.assertTrue(model.embedded_speaker_dim == config.d_vector_dim) |
|
|