|
import os |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.config.shared_configs import BaseDatasetConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig |
|
from TTS.utils.manage import ModelManager |
|
|
|
|
|
RUN_NAME = "GPT_XTTS_LJSpeech_FT" |
|
PROJECT_NAME = "XTTS_trainer" |
|
DASHBOARD_LOGGER = "tensorboard" |
|
LOGGER_URI = None |
|
|
|
|
|
OUT_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "run", "training") |
|
|
|
|
|
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True |
|
START_WITH_EVAL = True |
|
BATCH_SIZE = 3 |
|
GRAD_ACUMM_STEPS = 84 |
|
|
|
|
|
|
|
config_dataset = BaseDatasetConfig( |
|
formatter="ljspeech", |
|
dataset_name="ljspeech", |
|
path="/raid/datasets/LJSpeech-1.1_24khz/", |
|
meta_file_train="/raid/datasets/LJSpeech-1.1_24khz/metadata.csv", |
|
language="en", |
|
) |
|
|
|
|
|
DATASETS_CONFIG_LIST = [config_dataset] |
|
|
|
|
|
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v1.1_original_model_files/") |
|
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True) |
|
|
|
|
|
|
|
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/dvae.pth" |
|
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/mel_stats.pth" |
|
|
|
|
|
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, DVAE_CHECKPOINT_LINK.split("/")[-1]) |
|
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, MEL_NORM_LINK.split("/")[-1]) |
|
|
|
|
|
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE): |
|
print(" > Downloading DVAE files!") |
|
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True) |
|
|
|
|
|
|
|
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/vocab.json" |
|
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/model.pth" |
|
|
|
|
|
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, TOKENIZER_FILE_LINK.split("/")[-1]) |
|
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, XTTS_CHECKPOINT_LINK.split("/")[-1]) |
|
|
|
|
|
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT): |
|
print(" > Downloading XTTS v1.1 files!") |
|
ModelManager._download_model_files( |
|
[TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True |
|
) |
|
|
|
|
|
|
|
SPEAKER_REFERENCE = [ |
|
"./tests/data/ljspeech/wavs/LJ001-0002.wav" |
|
] |
|
LANGUAGE = config_dataset.language |
|
|
|
|
|
def main(): |
|
|
|
model_args = GPTArgs( |
|
max_conditioning_length=132300, |
|
min_conditioning_length=66150, |
|
debug_loading_failures=False, |
|
max_wav_length=255995, |
|
max_text_length=200, |
|
mel_norm_file=MEL_NORM_FILE, |
|
dvae_checkpoint=DVAE_CHECKPOINT, |
|
|
|
|
|
xtts_checkpoint=XTTS_CHECKPOINT, |
|
tokenizer_file=TOKENIZER_FILE, |
|
gpt_num_audio_tokens=8194, |
|
gpt_start_audio_token=8192, |
|
gpt_stop_audio_token=8193, |
|
) |
|
|
|
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) |
|
|
|
config = GPTTrainerConfig( |
|
output_path=OUT_PATH, |
|
model_args=model_args, |
|
run_name=RUN_NAME, |
|
project_name=PROJECT_NAME, |
|
run_description=""" |
|
GPT XTTS training |
|
""", |
|
dashboard_logger=DASHBOARD_LOGGER, |
|
logger_uri=LOGGER_URI, |
|
audio=audio_config, |
|
batch_size=BATCH_SIZE, |
|
batch_group_size=48, |
|
eval_batch_size=BATCH_SIZE, |
|
num_loader_workers=8, |
|
eval_split_max_size=256, |
|
print_step=50, |
|
plot_step=100, |
|
log_model_step=1000, |
|
save_step=10000, |
|
save_n_checkpoints=1, |
|
save_checkpoints=True, |
|
|
|
print_eval=False, |
|
|
|
optimizer="AdamW", |
|
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS, |
|
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2}, |
|
lr=5e-06, |
|
lr_scheduler="MultiStepLR", |
|
|
|
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1}, |
|
test_sentences=[ |
|
{ |
|
"text": "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", |
|
"speaker_wav": SPEAKER_REFERENCE, |
|
"language": LANGUAGE, |
|
}, |
|
{ |
|
"text": "This cake is great. It's so delicious and moist.", |
|
"speaker_wav": SPEAKER_REFERENCE, |
|
"language": LANGUAGE, |
|
}, |
|
], |
|
) |
|
|
|
|
|
model = GPTTrainer.init_from_config(config) |
|
|
|
|
|
train_samples, eval_samples = load_tts_samples( |
|
DATASETS_CONFIG_LIST, |
|
eval_split=True, |
|
eval_split_max_size=config.eval_split_max_size, |
|
eval_split_size=config.eval_split_size, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs( |
|
restore_path=None, |
|
skip_train_epoch=False, |
|
start_with_eval=START_WITH_EVAL, |
|
grad_accum_steps=GRAD_ACUMM_STEPS, |
|
), |
|
config, |
|
output_path=OUT_PATH, |
|
model=model, |
|
train_samples=train_samples, |
|
eval_samples=eval_samples, |
|
) |
|
trainer.fit() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|