|
import os |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.config.shared_configs import BaseDatasetConfig |
|
from TTS.tts.configs.delightful_tts_config import DelightfulTtsAudioConfig, DelightfulTTSConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.models.delightful_tts import DelightfulTTS, DelightfulTtsArgs, VocoderConfig |
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer |
|
from TTS.utils.audio.processor import AudioProcessor |
|
|
|
data_path = "" |
|
output_path = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
dataset_config = BaseDatasetConfig( |
|
dataset_name="ljspeech", formatter="ljspeech", meta_file_train="metadata.csv", path=data_path |
|
) |
|
|
|
audio_config = DelightfulTtsAudioConfig() |
|
model_args = DelightfulTtsArgs() |
|
|
|
vocoder_config = VocoderConfig() |
|
|
|
delightful_tts_config = DelightfulTTSConfig( |
|
run_name="delightful_tts_ljspeech", |
|
run_description="Train like in delightful tts paper.", |
|
model_args=model_args, |
|
audio=audio_config, |
|
vocoder=vocoder_config, |
|
batch_size=32, |
|
eval_batch_size=16, |
|
num_loader_workers=10, |
|
num_eval_loader_workers=10, |
|
precompute_num_workers=10, |
|
batch_group_size=2, |
|
compute_input_seq_cache=True, |
|
compute_f0=True, |
|
f0_cache_path=os.path.join(output_path, "f0_cache"), |
|
run_eval=True, |
|
test_delay_epochs=-1, |
|
epochs=1000, |
|
text_cleaner="english_cleaners", |
|
use_phonemes=True, |
|
phoneme_language="en-us", |
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), |
|
print_step=50, |
|
print_eval=False, |
|
mixed_precision=True, |
|
output_path=output_path, |
|
datasets=[dataset_config], |
|
start_by_longest=False, |
|
eval_split_size=0.1, |
|
binary_align_loss_alpha=0.0, |
|
use_attn_priors=False, |
|
lr_gen=4e-1, |
|
lr=4e-1, |
|
lr_disc=4e-1, |
|
max_text_len=130, |
|
) |
|
|
|
tokenizer, config = TTSTokenizer.init_from_config(delightful_tts_config) |
|
|
|
ap = AudioProcessor.init_from_config(config) |
|
|
|
|
|
train_samples, eval_samples = load_tts_samples( |
|
dataset_config, |
|
eval_split=True, |
|
eval_split_max_size=config.eval_split_max_size, |
|
eval_split_size=config.eval_split_size, |
|
) |
|
|
|
model = DelightfulTTS(ap=ap, config=config, tokenizer=tokenizer, speaker_manager=None) |
|
|
|
trainer = Trainer( |
|
TrainerArgs(), |
|
config, |
|
output_path, |
|
model=model, |
|
train_samples=train_samples, |
|
eval_samples=eval_samples, |
|
) |
|
|
|
trainer.fit() |
|
|