File size: 14,480 Bytes
7b8b31f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
{
"cells": [
{
"cell_type": "markdown",
"id": "f79d99ef",
"metadata": {},
"source": [
"# Train your first πΈ TTS model π«\n",
"\n",
"### π Hello and welcome to Coqui (πΈ) TTS\n",
"\n",
"The goal of this notebook is to show you a **typical workflow** for **training** and **testing** a TTS model with πΈ.\n",
"\n",
"Let's train a very small model on a very small amount of data so we can iterate quickly.\n",
"\n",
"In this notebook, we will:\n",
"\n",
"1. Download data and format it for πΈ TTS.\n",
"2. Configure the training and testing runs.\n",
"3. Train a new model.\n",
"4. Test the model and display its performance.\n",
"\n",
"So, let's jump right in!\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa2aec78",
"metadata": {},
"outputs": [],
"source": [
"## Install Coqui TTS\n",
"! pip install -U pip\n",
"! pip install TTS"
]
},
{
"cell_type": "markdown",
"id": "be5fe49c",
"metadata": {},
"source": [
"## β
Data Preparation\n",
"\n",
"### **First things first**: we need some data.\n",
"\n",
"We're training a Text-to-Speech model, so we need some _text_ and we need some _speech_. Specificially, we want _transcribed speech_. The speech must be divided into audio clips and each clip needs transcription. More details about data requirements such as recording characteristics, background noise and vocabulary coverage can be found in the [πΈTTS documentation](https://tts.readthedocs.io/en/latest/formatting_your_dataset.html).\n",
"\n",
"If you have a single audio file and you need to **split** it into clips. It is also important to use a lossless audio file format to prevent compression artifacts. We recommend using **wav** file format.\n",
"\n",
"The data format we will be adopting for this tutorial is taken from the widely-used **LJSpeech** dataset, where **waves** are collected under a folder:\n",
"\n",
"<span style=\"color:purple;font-size:15px\">\n",
"/wavs<br /> \n",
"  | - audio1.wav<br /> \n",
"  | - audio2.wav<br /> \n",
"  | - audio3.wav<br /> \n",
" ...<br /> \n",
"</span>\n",
"\n",
"and a **metadata.csv** file will have the audio file name in parallel to the transcript, delimited by `|`: \n",
" \n",
"<span style=\"color:purple;font-size:15px\">\n",
"# metadata.csv <br /> \n",
"audio1|This is my sentence. <br /> \n",
"audio2|This is maybe my sentence. <br /> \n",
"audio3|This is certainly my sentence. <br /> \n",
"audio4|Let this be your sentence. <br /> \n",
"...\n",
"</span>\n",
"\n",
"In the end, we should have the following **folder structure**:\n",
"\n",
"<span style=\"color:purple;font-size:15px\">\n",
"/MyTTSDataset <br /> \n",
" | <br /> \n",
" | -> metadata.csv<br /> \n",
" | -> /wavs<br /> \n",
"  | -> audio1.wav<br /> \n",
"  | -> audio2.wav<br /> \n",
"  | ...<br /> \n",
"</span>"
]
},
{
"cell_type": "markdown",
"id": "69501a10-3b53-4e75-ae66-90221d6f2271",
"metadata": {},
"source": [
"πΈTTS already provides tooling for the _LJSpeech_. if you use the same format, you can start training your models right away. <br /> \n",
"\n",
"After you collect and format your dataset, you need to check two things. Whether you need a **_formatter_** and a **_text_cleaner_**. <br /> The **_formatter_** loads the text file (created above) as a list and the **_text_cleaner_** performs a sequence of text normalization operations that converts the raw text into the spoken representation (e.g. converting numbers to text, acronyms, and symbols to the spoken format).\n",
"\n",
"If you use a different dataset format then the LJSpeech or the other public datasets that πΈTTS supports, then you need to write your own **_formatter_** and **_text_cleaner_**."
]
},
{
"cell_type": "markdown",
"id": "e7f226c8-4e55-48fa-937b-8415d539b17c",
"metadata": {},
"source": [
"## β³οΈ Loading your dataset\n",
"Load one of the dataset supported by πΈTTS.\n",
"\n",
"We will start by defining dataset config and setting LJSpeech as our target dataset and define its path.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3cb0191-b8fc-4158-bd26-8423c2a8ba66",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"# BaseDatasetConfig: defines name, formatter and path of the dataset.\n",
"from TTS.tts.configs.shared_configs import BaseDatasetConfig\n",
"\n",
"output_path = \"tts_train_dir\"\n",
"if not os.path.exists(output_path):\n",
" os.makedirs(output_path)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ae6b7019-3685-4b48-8917-c152e288d7e3",
"metadata": {},
"outputs": [],
"source": [
"# Download and extract LJSpeech dataset.\n",
"\n",
"!wget -O $output_path/LJSpeech-1.1.tar.bz2 https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2 \n",
"!tar -xf $output_path/LJSpeech-1.1.tar.bz2 -C $output_path"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76cd3ab5-6387-45f1-b488-24734cc1beb5",
"metadata": {},
"outputs": [],
"source": [
"dataset_config = BaseDatasetConfig(\n",
" formatter=\"ljspeech\", meta_file_train=\"metadata.csv\", path=os.path.join(output_path, \"LJSpeech-1.1/\")\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ae82fd75",
"metadata": {},
"source": [
"## β
Train a new model\n",
"\n",
"Let's kick off a training run πππ.\n",
"\n",
"Deciding on the model architecture you'd want to use is based on your needs and available resources. Each model architecture has it's pros and cons that define the run-time efficiency and the voice quality.\n",
"We have many recipes under `TTS/recipes/` that provide a good starting point. For this tutorial, we will be using `GlowTTS`."
]
},
{
"cell_type": "markdown",
"id": "f5876e46-2aee-4bcf-b6b3-9e3c535c553f",
"metadata": {},
"source": [
"We will begin by initializing the model training configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5483ca28-39d6-49f8-a18e-4fb53c50ad84",
"metadata": {},
"outputs": [],
"source": [
"# GlowTTSConfig: all model related values for training, validating and testing.\n",
"from TTS.tts.configs.glow_tts_config import GlowTTSConfig\n",
"config = GlowTTSConfig(\n",
" batch_size=32,\n",
" eval_batch_size=16,\n",
" num_loader_workers=4,\n",
" num_eval_loader_workers=4,\n",
" run_eval=True,\n",
" test_delay_epochs=-1,\n",
" epochs=100,\n",
" text_cleaner=\"phoneme_cleaners\",\n",
" use_phonemes=True,\n",
" phoneme_language=\"en-us\",\n",
" phoneme_cache_path=os.path.join(output_path, \"phoneme_cache\"),\n",
" print_step=25,\n",
" print_eval=False,\n",
" mixed_precision=True,\n",
" output_path=output_path,\n",
" datasets=[dataset_config],\n",
" save_step=1000,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b93ed377-80b7-447b-bd92-106bffa777ee",
"metadata": {},
"source": [
"Next we will initialize the audio processor which is used for feature extraction and audio I/O."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1b12f61-f851-4565-84dd-7640947e04ab",
"metadata": {},
"outputs": [],
"source": [
"from TTS.utils.audio import AudioProcessor\n",
"ap = AudioProcessor.init_from_config(config)\n",
"# Modify sample rate if for a custom audio dataset:\n",
"# ap.sample_rate = 22050\n"
]
},
{
"cell_type": "markdown",
"id": "1d461683-b05e-403f-815f-8007bda08c38",
"metadata": {},
"source": [
"Next we will initialize the tokenizer which is used to convert text to sequences of token IDs. If characters are not defined in the config, default characters are passed to the config."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "014879b7-f18d-44c0-b24a-e10f8002113a",
"metadata": {},
"outputs": [],
"source": [
"from TTS.tts.utils.text.tokenizer import TTSTokenizer\n",
"tokenizer, config = TTSTokenizer.init_from_config(config)"
]
},
{
"cell_type": "markdown",
"id": "df3016e1-9e99-4c4f-94e3-fa89231fd978",
"metadata": {},
"source": [
"Next we will load data samples. Each sample is a list of ```[text, audio_file_path, speaker_name]```. You can define your custom sample loader returning the list of samples."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cadd6ada-c8eb-4f79-b8fe-6d72850af5a7",
"metadata": {},
"outputs": [],
"source": [
"from TTS.tts.datasets import load_tts_samples\n",
"train_samples, eval_samples = load_tts_samples(\n",
" dataset_config,\n",
" eval_split=True,\n",
" eval_split_max_size=config.eval_split_max_size,\n",
" eval_split_size=config.eval_split_size,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "db8b451e-1fe1-4aa3-b69e-ab22b925bd19",
"metadata": {},
"source": [
"Now we're ready to initialize the model.\n",
"\n",
"Models take a config object and a speaker manager as input. Config defines the details of the model like the number of layers, the size of the embedding, etc. Speaker manager is used by multi-speaker models."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ac2ffe3e-ad0c-443e-800c-9b076ee811b4",
"metadata": {},
"outputs": [],
"source": [
"from TTS.tts.models.glow_tts import GlowTTS\n",
"model = GlowTTS(config, ap, tokenizer, speaker_manager=None)"
]
},
{
"cell_type": "markdown",
"id": "e2832c56-889d-49a6-95b6-eb231892ecc6",
"metadata": {},
"source": [
"Trainer provides a generic API to train all the πΈTTS models with all its perks like mixed-precision training, distributed training, etc."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0f609945-4fe0-4d0d-b95e-11d7bfb63ebe",
"metadata": {},
"outputs": [],
"source": [
"from trainer import Trainer, TrainerArgs\n",
"trainer = Trainer(\n",
" TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples\n",
")"
]
},
{
"cell_type": "markdown",
"id": "5b320831-dd83-429b-bb6a-473f9d49d321",
"metadata": {},
"source": [
"### AND... 3,2,1... START TRAINING πππ"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4c07f99-3d1d-4bea-801e-9f33bbff0e9f",
"metadata": {},
"outputs": [],
"source": [
"trainer.fit()"
]
},
{
"cell_type": "markdown",
"id": "4cff0c40-2734-40a6-a905-e945a9fb3e98",
"metadata": {},
"source": [
"#### π Run the Tensorboard. π\n",
"On the notebook and Tensorboard, you can monitor the progress of your model. Also Tensorboard provides certain figures and sample outputs."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a85cd3b-1646-40ad-a6c2-49323e08eeec",
"metadata": {},
"outputs": [],
"source": [
"!pip install tensorboard\n",
"!tensorboard --logdir=tts_train_dir"
]
},
{
"cell_type": "markdown",
"id": "9f6dc959",
"metadata": {},
"source": [
"## β
Test the model\n",
"\n",
"We made it! π\n",
"\n",
"Let's kick off the testing run, which displays performance metrics.\n",
"\n",
"We're committing the cardinal sin of ML π (aka - testing on our training data) so you don't want to deploy this model into production. In this notebook we're focusing on the workflow itself, so it's forgivable π\n",
"\n",
"You can see from the test output that our tiny model has overfit to the data, and basically memorized this one sentence.\n",
"\n",
"When you start training your own models, make sure your testing data doesn't include your training data π
"
]
},
{
"cell_type": "markdown",
"id": "99fada7a-592f-4a09-9369-e6f3d82de3a0",
"metadata": {},
"source": [
"Let's get the latest saved checkpoint. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6dd47ed5-da8e-4bf9-b524-d686630d6961",
"metadata": {},
"outputs": [],
"source": [
"import glob, os\n",
"output_path = \"tts_train_dir\"\n",
"ckpts = sorted([f for f in glob.glob(output_path+\"/*/*.pth\")])\n",
"configs = sorted([f for f in glob.glob(output_path+\"/*/*.json\")])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd42bc7a",
"metadata": {},
"outputs": [],
"source": [
" !tts --text \"Text for TTS\" \\\n",
" --model_path $test_ckpt \\\n",
" --config_path $test_config \\\n",
" --out_path out.wav"
]
},
{
"cell_type": "markdown",
"id": "81cbcb3f-d952-469b-a0d8-8941cd7af670",
"metadata": {},
"source": [
"## π£ Listen to the synthesized wave π£"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e0000bd6-6763-4a10-a74d-911dd08ebcff",
"metadata": {},
"outputs": [],
"source": [
"import IPython\n",
"IPython.display.Audio(\"out.wav\")"
]
},
{
"cell_type": "markdown",
"id": "13914401-cad1-494a-b701-474e52829138",
"metadata": {},
"source": [
"## π Congratulations! π You now have trained your first TTS model! \n",
"Follow up with the next tutorials to learn more advanced material."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "950d9fc6-896f-4a2c-86fd-8fd1fcbbb3f7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|