prashantloni commited on
Commit
aaad26b
·
verified ·
1 Parent(s): b629379

End of training

Browse files
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: SCUT-DLVCLab/lilt-roberta-en-base
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: lilt-en-combined
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # lilt-en-combined
15
+
16
+ This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0876
19
+ - Adhaar Number: {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39}
20
+ - Ame: {'precision': 0.9516129032258065, 'recall': 0.9516129032258065, 'f1': 0.9516129032258065, 'number': 62}
21
+ - An Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17}
22
+ - Assport Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20}
23
+ - Ast Name: {'precision': 0.8947368421052632, 'recall': 0.9444444444444444, 'f1': 0.918918918918919, 'number': 18}
24
+ - Ate Of Expiry: {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 20}
25
+ - Ather Name: {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31}
26
+ - Ather Name Back: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17}
27
+ - Ather Name Front Top: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12}
28
+ - Ddress: {'precision': 0.8, 'recall': 0.75, 'f1': 0.7741935483870969, 'number': 16}
29
+ - Ddress Back: {'precision': 0.9384615384615385, 'recall': 0.8970588235294118, 'f1': 0.9172932330827067, 'number': 68}
30
+ - Ddress Front: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49}
31
+ - Ender: {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41}
32
+ - Ob: {'precision': 0.9833333333333333, 'recall': 0.9833333333333333, 'f1': 0.9833333333333333, 'number': 60}
33
+ - Obile Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
34
+ - Other Name: {'precision': 0.5, 'recall': 0.6153846153846154, 'f1': 0.5517241379310345, 'number': 13}
35
+ - Rz Passport: {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23}
36
+ - Ther: {'precision': 0.9044943820224719, 'recall': 0.9044943820224719, 'f1': 0.9044943820224719, 'number': 356}
37
+ - Overall Precision: 0.9300
38
+ - Overall Recall: 0.9289
39
+ - Overall F1: 0.9294
40
+ - Overall Accuracy: 0.9909
41
+
42
+ ## Model description
43
+
44
+ More information needed
45
+
46
+ ## Intended uses & limitations
47
+
48
+ More information needed
49
+
50
+ ## Training and evaluation data
51
+
52
+ More information needed
53
+
54
+ ## Training procedure
55
+
56
+ ### Training hyperparameters
57
+
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 5e-05
60
+ - train_batch_size: 8
61
+ - eval_batch_size: 8
62
+ - seed: 42
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - training_steps: 2500
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Adhaar Number | Ame | An Number | Assport Number | Ast Name | Ate Of Expiry | Ather Name | Ather Name Back | Ather Name Front Top | Ddress | Ddress Back | Ddress Front | Ender | Ob | Obile Number | Other Name | Rz Passport | Ther | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
71
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
72
+ | 0.3119 | 3.45 | 200 | 0.1237 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.8833333333333333, 'recall': 0.8548387096774194, 'f1': 0.8688524590163934, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.7894736842105263, 'recall': 0.8333333333333334, 'f1': 0.8108108108108109, 'number': 18} | {'precision': 0.8823529411764706, 'recall': 0.75, 'f1': 0.8108108108108107, 'number': 20} | {'precision': 0.9, 'recall': 0.8709677419354839, 'f1': 0.8852459016393444, 'number': 31} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.4, 'recall': 0.25, 'f1': 0.3076923076923077, 'number': 16} | {'precision': 0.8888888888888888, 'recall': 0.8235294117647058, 'f1': 0.8549618320610687, 'number': 68} | {'precision': 1.0, 'recall': 0.9795918367346939, 'f1': 0.9896907216494846, 'number': 49} | {'precision': 1.0, 'recall': 0.926829268292683, 'f1': 0.9620253164556963, 'number': 41} | {'precision': 1.0, 'recall': 0.9666666666666667, 'f1': 0.983050847457627, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5384615384615384, 'recall': 0.5384615384615384, 'f1': 0.5384615384615384, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8497109826589595, 'recall': 0.8258426966292135, 'f1': 0.8376068376068376, 'number': 356} | 0.8942 | 0.8624 | 0.8780 | 0.9788 |
73
+ | 0.0352 | 6.9 | 400 | 0.0822 | {'precision': 0.8604651162790697, 'recall': 0.9487179487179487, 'f1': 0.9024390243902439, 'number': 39} | {'precision': 0.8253968253968254, 'recall': 0.8387096774193549, 'f1': 0.832, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.8947368421052632, 'recall': 0.9444444444444444, 'f1': 0.918918918918919, 'number': 18} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 20} | {'precision': 0.9032258064516129, 'recall': 0.9032258064516129, 'f1': 0.9032258064516129, 'number': 31} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8, 'recall': 0.75, 'f1': 0.7741935483870969, 'number': 16} | {'precision': 0.8787878787878788, 'recall': 0.8529411764705882, 'f1': 0.8656716417910447, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 0.975609756097561, 'recall': 0.975609756097561, 'f1': 0.975609756097561, 'number': 41} | {'precision': 1.0, 'recall': 0.9833333333333333, 'f1': 0.9915966386554621, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5, 'recall': 0.6153846153846154, 'f1': 0.5517241379310345, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8689458689458689, 'recall': 0.8567415730337079, 'f1': 0.8628005657708628, 'number': 356} | 0.8956 | 0.8956 | 0.8956 | 0.9855 |
74
+ | 0.0162 | 10.34 | 600 | 0.0936 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.9193548387096774, 'recall': 0.9193548387096774, 'f1': 0.9193548387096774, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 0.9523809523809523, 'recall': 1.0, 'f1': 0.975609756097561, 'number': 20} | {'precision': 0.8947368421052632, 'recall': 0.9444444444444444, 'f1': 0.918918918918919, 'number': 18} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 20} | {'precision': 1.0, 'recall': 0.967741935483871, 'f1': 0.9836065573770492, 'number': 31} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.7857142857142857, 'recall': 0.6875, 'f1': 0.7333333333333334, 'number': 16} | {'precision': 0.9206349206349206, 'recall': 0.8529411764705882, 'f1': 0.8854961832061068, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41} | {'precision': 0.9672131147540983, 'recall': 0.9833333333333333, 'f1': 0.9752066115702478, 'number': 60} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 10} | {'precision': 0.7272727272727273, 'recall': 0.6153846153846154, 'f1': 0.6666666666666667, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8895184135977338, 'recall': 0.8820224719101124, 'f1': 0.8857545839210157, 'number': 356} | 0.9246 | 0.9140 | 0.9193 | 0.9885 |
75
+ | 0.0072 | 13.79 | 800 | 0.0849 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.890625, 'recall': 0.9193548387096774, 'f1': 0.9047619047619047, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.85, 'recall': 0.9444444444444444, 'f1': 0.8947368421052632, 'number': 18} | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 20} | {'precision': 0.7941176470588235, 'recall': 0.8709677419354839, 'f1': 0.8307692307692308, 'number': 31} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.7058823529411765, 'recall': 0.75, 'f1': 0.7272727272727272, 'number': 16} | {'precision': 0.921875, 'recall': 0.8676470588235294, 'f1': 0.893939393939394, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41} | {'precision': 0.9672131147540983, 'recall': 0.9833333333333333, 'f1': 0.9752066115702478, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.6666666666666666, 'recall': 0.46153846153846156, 'f1': 0.5454545454545455, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8690807799442897, 'recall': 0.8764044943820225, 'f1': 0.8727272727272727, 'number': 356} | 0.9033 | 0.9106 | 0.9069 | 0.9848 |
76
+ | 0.0045 | 17.24 | 1000 | 0.0882 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.8688524590163934, 'recall': 0.8548387096774194, 'f1': 0.8617886178861789, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.8421052631578947, 'recall': 0.8888888888888888, 'f1': 0.8648648648648649, 'number': 18} | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.9310344827586207, 'recall': 0.8709677419354839, 'f1': 0.9, 'number': 31} | {'precision': 0.8888888888888888, 'recall': 0.9411764705882353, 'f1': 0.9142857142857143, 'number': 17} | {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 12} | {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} | {'precision': 0.890625, 'recall': 0.8382352941176471, 'f1': 0.8636363636363636, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 0.975, 'recall': 0.9512195121951219, 'f1': 0.9629629629629629, 'number': 41} | {'precision': 0.9672131147540983, 'recall': 0.9833333333333333, 'f1': 0.9752066115702478, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5333333333333333, 'recall': 0.6153846153846154, 'f1': 0.5714285714285715, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8631284916201117, 'recall': 0.8679775280898876, 'f1': 0.8655462184873948, 'number': 356} | 0.8961 | 0.9002 | 0.8982 | 0.9860 |
77
+ | 0.002 | 20.69 | 1200 | 0.0821 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.8939393939393939, 'recall': 0.9516129032258065, 'f1': 0.921875, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.75, 'recall': 0.8333333333333334, 'f1': 0.7894736842105262, 'number': 18} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.9666666666666667, 'recall': 0.9354838709677419, 'f1': 0.9508196721311476, 'number': 31} | {'precision': 1.0, 'recall': 0.9411764705882353, 'f1': 0.9696969696969697, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8, 'recall': 0.75, 'f1': 0.7741935483870969, 'number': 16} | {'precision': 0.8923076923076924, 'recall': 0.8529411764705882, 'f1': 0.8721804511278195, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41} | {'precision': 0.9672131147540983, 'recall': 0.9833333333333333, 'f1': 0.9752066115702478, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5384615384615384, 'recall': 0.5384615384615384, 'f1': 0.5384615384615384, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8920454545454546, 'recall': 0.8820224719101124, 'f1': 0.8870056497175142, 'number': 356} | 0.9170 | 0.9117 | 0.9143 | 0.9887 |
78
+ | 0.0013 | 24.14 | 1400 | 0.0909 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.9516129032258065, 'recall': 0.9516129032258065, 'f1': 0.9516129032258065, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.8947368421052632, 'recall': 0.9444444444444444, 'f1': 0.918918918918919, 'number': 18} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 20} | {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31} | {'precision': 1.0, 'recall': 0.9411764705882353, 'f1': 0.9696969696969697, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8571428571428571, 'recall': 0.75, 'f1': 0.7999999999999999, 'number': 16} | {'precision': 0.9242424242424242, 'recall': 0.8970588235294118, 'f1': 0.9104477611940298, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41} | {'precision': 0.9836065573770492, 'recall': 1.0, 'f1': 0.9917355371900827, 'number': 60} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 10} | {'precision': 0.6153846153846154, 'recall': 0.6153846153846154, 'f1': 0.6153846153846154, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.901685393258427, 'recall': 0.901685393258427, 'f1': 0.901685393258427, 'number': 356} | 0.9309 | 0.9266 | 0.9287 | 0.9901 |
79
+ | 0.001 | 27.59 | 1600 | 0.0808 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.9516129032258065, 'recall': 0.9516129032258065, 'f1': 0.9516129032258065, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.7894736842105263, 'recall': 0.8333333333333334, 'f1': 0.8108108108108109, 'number': 18} | {'precision': 0.8571428571428571, 'recall': 0.9, 'f1': 0.8780487804878048, 'number': 20} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.7368421052631579, 'recall': 0.875, 'f1': 0.7999999999999999, 'number': 16} | {'precision': 0.9384615384615385, 'recall': 0.8970588235294118, 'f1': 0.9172932330827067, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41} | {'precision': 0.9833333333333333, 'recall': 0.9833333333333333, 'f1': 0.9833333333333333, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5714285714285714, 'recall': 0.6153846153846154, 'f1': 0.5925925925925927, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8938547486033519, 'recall': 0.898876404494382, 'f1': 0.896358543417367, 'number': 356} | 0.9224 | 0.9266 | 0.9245 | 0.9899 |
80
+ | 0.0004 | 31.03 | 1800 | 0.0922 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.7894736842105263, 'recall': 0.8333333333333334, 'f1': 0.8108108108108109, 'number': 18} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 20} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.7857142857142857, 'recall': 0.6875, 'f1': 0.7333333333333334, 'number': 16} | {'precision': 0.9375, 'recall': 0.8823529411764706, 'f1': 0.9090909090909091, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41} | {'precision': 0.9672131147540983, 'recall': 0.9833333333333333, 'f1': 0.9752066115702478, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5, 'recall': 0.5384615384615384, 'f1': 0.5185185185185186, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8977272727272727, 'recall': 0.8876404494382022, 'f1': 0.8926553672316383, 'number': 356} | 0.9236 | 0.9151 | 0.9194 | 0.9891 |
81
+ | 0.0003 | 34.48 | 2000 | 0.0898 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.9516129032258065, 'recall': 0.9516129032258065, 'f1': 0.9516129032258065, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.8421052631578947, 'recall': 0.8888888888888888, 'f1': 0.8648648648648649, 'number': 18} | {'precision': 0.8571428571428571, 'recall': 0.9, 'f1': 0.8780487804878048, 'number': 20} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8666666666666667, 'recall': 0.8125, 'f1': 0.8387096774193549, 'number': 16} | {'precision': 0.90625, 'recall': 0.8529411764705882, 'f1': 0.8787878787878787, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41} | {'precision': 0.9516129032258065, 'recall': 0.9833333333333333, 'f1': 0.9672131147540983, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5, 'recall': 0.5384615384615384, 'f1': 0.5185185185185186, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8904494382022472, 'recall': 0.8904494382022472, 'f1': 0.8904494382022472, 'number': 356} | 0.9196 | 0.9186 | 0.9191 | 0.9892 |
82
+ | 0.0003 | 37.93 | 2200 | 0.0843 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.9516129032258065, 'recall': 0.9516129032258065, 'f1': 0.9516129032258065, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.8947368421052632, 'recall': 0.9444444444444444, 'f1': 0.918918918918919, 'number': 18} | {'precision': 0.8571428571428571, 'recall': 0.9, 'f1': 0.8780487804878048, 'number': 20} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.875, 'recall': 0.875, 'f1': 0.875, 'number': 16} | {'precision': 0.90625, 'recall': 0.8529411764705882, 'f1': 0.8787878787878787, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41} | {'precision': 0.9672131147540983, 'recall': 0.9833333333333333, 'f1': 0.9752066115702478, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.4375, 'recall': 0.5384615384615384, 'f1': 0.4827586206896552, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.8935574229691877, 'recall': 0.8960674157303371, 'f1': 0.8948106591865358, 'number': 356} | 0.9211 | 0.9232 | 0.9221 | 0.9899 |
83
+ | 0.0002 | 41.38 | 2400 | 0.0876 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.9516129032258065, 'recall': 0.9516129032258065, 'f1': 0.9516129032258065, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 20} | {'precision': 0.8947368421052632, 'recall': 0.9444444444444444, 'f1': 0.918918918918919, 'number': 18} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 20} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8, 'recall': 0.75, 'f1': 0.7741935483870969, 'number': 16} | {'precision': 0.9384615384615385, 'recall': 0.8970588235294118, 'f1': 0.9172932330827067, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9512195121951219, 'f1': 0.975, 'number': 41} | {'precision': 0.9833333333333333, 'recall': 0.9833333333333333, 'f1': 0.9833333333333333, 'number': 60} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5, 'recall': 0.6153846153846154, 'f1': 0.5517241379310345, 'number': 13} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.9044943820224719, 'recall': 0.9044943820224719, 'f1': 0.9044943820224719, 'number': 356} | 0.9300 | 0.9289 | 0.9294 | 0.9909 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.38.2
89
+ - Pytorch 2.2.1+cu121
90
+ - Datasets 2.18.0
91
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1710954523.4d917c5279af.380.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a7b1932d09f0dbb74e5bba0cc322906db41180af1ba02678d4fedf9f5b87b67d
3
- size 14166
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd1f0776008516c52c6a1af6bd2fe9b78c72561a56aa5470191ee7217f100a14
3
+ size 14520
logs/events.out.tfevents.1710955966.4d917c5279af.380.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5f81dcbf80a101ea7f116a7fd89270248be29795f5f4183eb04999b2c916361
3
+ size 592
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "LayoutLMv3FeatureExtractor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv3Processor",
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ },
25
+ "tesseract_config": ""
26
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "eos_token": "</s>",
55
+ "errors": "replace",
56
+ "mask_token": "<mask>",
57
+ "model_max_length": 512,
58
+ "only_label_first_subword": true,
59
+ "pad_token": "<pad>",
60
+ "pad_token_box": [
61
+ 0,
62
+ 0,
63
+ 0,
64
+ 0
65
+ ],
66
+ "pad_token_label": -100,
67
+ "processor_class": "LayoutLMv3Processor",
68
+ "sep_token": "</s>",
69
+ "sep_token_box": [
70
+ 0,
71
+ 0,
72
+ 0,
73
+ 0
74
+ ],
75
+ "tokenizer_class": "LayoutLMv3Tokenizer",
76
+ "trim_offsets": true,
77
+ "unk_token": "<unk>"
78
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff