prashantloni commited on
Commit
84d9ba6
·
verified ·
1 Parent(s): 0dd44df

End of training

Browse files
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: SCUT-DLVCLab/lilt-roberta-en-base
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: lilt-en-aadhaar2
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # lilt-en-aadhaar2
15
+
16
+ This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0737
19
+ - Adhaar Number: {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39}
20
+ - Ame: {'precision': 0.92, 'recall': 0.9583333333333334, 'f1': 0.9387755102040817, 'number': 24}
21
+ - Ather Name: {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3}
22
+ - Ather Name Back: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17}
23
+ - Ather Name Front Top: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12}
24
+ - Ddress Back: {'precision': 0.953125, 'recall': 0.8970588235294118, 'f1': 0.9242424242424244, 'number': 68}
25
+ - Ddress Front: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49}
26
+ - Ender: {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21}
27
+ - Ob: {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22}
28
+ - Obile Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
29
+ - Ther: {'precision': 0.9297297297297298, 'recall': 0.9297297297297298, 'f1': 0.9297297297297298, 'number': 185}
30
+ - Overall Precision: 0.9509
31
+ - Overall Recall: 0.9467
32
+ - Overall F1: 0.9488
33
+ - Overall Accuracy: 0.9953
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 5e-05
53
+ - train_batch_size: 8
54
+ - eval_batch_size: 8
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - training_steps: 2500
59
+ - mixed_precision_training: Native AMP
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Adhaar Number | Ame | Ather Name | Ather Name Back | Ather Name Front Top | Ddress Back | Ddress Front | Ender | Ob | Obile Number | Ther | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
64
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
65
+ | 0.1686 | 8.33 | 200 | 0.0638 | {'precision': 0.8780487804878049, 'recall': 0.9230769230769231, 'f1': 0.9, 'number': 39} | {'precision': 0.88, 'recall': 0.9166666666666666, 'f1': 0.8979591836734694, 'number': 24} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8709677419354839, 'recall': 0.7941176470588235, 'f1': 0.8307692307692308, 'number': 68} | {'precision': 0.9795918367346939, 'recall': 0.9795918367346939, 'f1': 0.9795918367346939, 'number': 49} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8852459016393442, 'recall': 0.8756756756756757, 'f1': 0.8804347826086957, 'number': 185} | 0.9101 | 0.9 | 0.9050 | 0.9897 |
66
+ | 0.0036 | 16.67 | 400 | 0.0807 | {'precision': 0.9047619047619048, 'recall': 0.9743589743589743, 'f1': 0.9382716049382716, 'number': 39} | {'precision': 0.88, 'recall': 0.9166666666666666, 'f1': 0.8979591836734694, 'number': 24} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.6521739130434783, 'recall': 0.8823529411764706, 'f1': 0.75, 'number': 17} | {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12} | {'precision': 0.7647058823529411, 'recall': 0.7647058823529411, 'f1': 0.7647058823529412, 'number': 68} | {'precision': 0.92, 'recall': 0.9387755102040817, 'f1': 0.9292929292929293, 'number': 49} | {'precision': 1.0, 'recall': 0.9047619047619048, 'f1': 0.9500000000000001, 'number': 21} | {'precision': 0.9565217391304348, 'recall': 1.0, 'f1': 0.9777777777777777, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8716577540106952, 'recall': 0.8810810810810811, 'f1': 0.8763440860215054, 'number': 185} | 0.8664 | 0.8933 | 0.8796 | 0.9885 |
67
+ | 0.0027 | 25.0 | 600 | 0.0797 | {'precision': 0.925, 'recall': 0.9487179487179487, 'f1': 0.9367088607594937, 'number': 39} | {'precision': 0.92, 'recall': 0.9583333333333334, 'f1': 0.9387755102040817, 'number': 24} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 3} | {'precision': 0.9411764705882353, 'recall': 0.9411764705882353, 'f1': 0.9411764705882353, 'number': 17} | {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 12} | {'precision': 0.8405797101449275, 'recall': 0.8529411764705882, 'f1': 0.8467153284671534, 'number': 68} | {'precision': 0.9591836734693877, 'recall': 0.9591836734693877, 'f1': 0.9591836734693877, 'number': 49} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8870967741935484, 'recall': 0.8918918918918919, 'f1': 0.8894878706199462, 'number': 185} | 0.9035 | 0.9156 | 0.9095 | 0.9910 |
68
+ | 0.0024 | 33.33 | 800 | 0.0623 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.92, 'recall': 0.9583333333333334, 'f1': 0.9387755102040817, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9375, 'recall': 0.8823529411764706, 'f1': 0.9090909090909091, 'number': 68} | {'precision': 1.0, 'recall': 0.9795918367346939, 'f1': 0.9896907216494846, 'number': 49} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 0.8695652173913043, 'recall': 0.9090909090909091, 'f1': 0.888888888888889, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9239130434782609, 'recall': 0.918918918918919, 'f1': 0.9214092140921409, 'number': 185} | 0.9439 | 0.9356 | 0.9397 | 0.9947 |
69
+ | 0.0004 | 41.67 | 1000 | 0.0849 | {'precision': 0.95, 'recall': 0.9743589743589743, 'f1': 0.9620253164556962, 'number': 39} | {'precision': 0.8846153846153846, 'recall': 0.9583333333333334, 'f1': 0.9199999999999999, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8769230769230769, 'recall': 0.8382352941176471, 'f1': 0.8571428571428571, 'number': 68} | {'precision': 0.9791666666666666, 'recall': 0.9591836734693877, 'f1': 0.9690721649484536, 'number': 49} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8864864864864865, 'recall': 0.8864864864864865, 'f1': 0.8864864864864865, 'number': 185} | 0.9156 | 0.9156 | 0.9156 | 0.9922 |
70
+ | 0.0002 | 50.0 | 1200 | 0.0699 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9230769230769231, 'recall': 0.8823529411764706, 'f1': 0.9022556390977443, 'number': 68} | {'precision': 1.0, 'recall': 0.9795918367346939, 'f1': 0.9896907216494846, 'number': 49} | {'precision': 1.0, 'recall': 0.9047619047619048, 'f1': 0.9500000000000001, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8972972972972973, 'recall': 0.8972972972972973, 'f1': 0.8972972972972972, 'number': 185} | 0.9286 | 0.9244 | 0.9265 | 0.9938 |
71
+ | 0.0001 | 58.33 | 1400 | 0.0733 | {'precision': 0.95, 'recall': 0.9743589743589743, 'f1': 0.9620253164556962, 'number': 39} | {'precision': 0.92, 'recall': 0.9583333333333334, 'f1': 0.9387755102040817, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.8923076923076924, 'recall': 0.8529411764705882, 'f1': 0.8721804511278195, 'number': 68} | {'precision': 1.0, 'recall': 0.9795918367346939, 'f1': 0.9896907216494846, 'number': 49} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.907608695652174, 'recall': 0.9027027027027027, 'f1': 0.9051490514905148, 'number': 185} | 0.9308 | 0.9267 | 0.9287 | 0.9941 |
72
+ | 0.0002 | 66.67 | 1600 | 0.0728 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9384615384615385, 'recall': 0.8970588235294118, 'f1': 0.9172932330827067, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9139784946236559, 'recall': 0.918918918918919, 'f1': 0.9164420485175202, 'number': 185} | 0.9379 | 0.94 | 0.9390 | 0.9947 |
73
+ | 0.0002 | 75.0 | 1800 | 0.0731 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.92, 'recall': 0.9583333333333334, 'f1': 0.9387755102040817, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.953125, 'recall': 0.8970588235294118, 'f1': 0.9242424242424244, 'number': 68} | {'precision': 1.0, 'recall': 0.9795918367346939, 'f1': 0.9896907216494846, 'number': 49} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9243243243243243, 'recall': 0.9243243243243243, 'f1': 0.9243243243243243, 'number': 185} | 0.9485 | 0.9422 | 0.9454 | 0.9950 |
74
+ | 0.0001 | 83.33 | 2000 | 0.0737 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.92, 'recall': 0.9583333333333334, 'f1': 0.9387755102040817, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.953125, 'recall': 0.8970588235294118, 'f1': 0.9242424242424244, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9297297297297298, 'recall': 0.9297297297297298, 'f1': 0.9297297297297298, 'number': 185} | 0.9509 | 0.9467 | 0.9488 | 0.9953 |
75
+ | 0.0001 | 91.67 | 2200 | 0.0750 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.92, 'recall': 0.9583333333333334, 'f1': 0.9387755102040817, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.953125, 'recall': 0.8970588235294118, 'f1': 0.9242424242424244, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9297297297297298, 'recall': 0.9297297297297298, 'f1': 0.9297297297297298, 'number': 185} | 0.9509 | 0.9467 | 0.9488 | 0.9953 |
76
+ | 0.0001 | 100.0 | 2400 | 0.0751 | {'precision': 0.975, 'recall': 1.0, 'f1': 0.9873417721518987, 'number': 39} | {'precision': 0.92, 'recall': 0.9583333333333334, 'f1': 0.9387755102040817, 'number': 24} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9375, 'recall': 0.8823529411764706, 'f1': 0.9090909090909091, 'number': 68} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 49} | {'precision': 1.0, 'recall': 0.9523809523809523, 'f1': 0.975609756097561, 'number': 21} | {'precision': 0.9130434782608695, 'recall': 0.9545454545454546, 'f1': 0.9333333333333332, 'number': 22} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9243243243243243, 'recall': 0.9243243243243243, 'f1': 0.9243243243243243, 'number': 185} | 0.9464 | 0.9422 | 0.9443 | 0.9950 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.38.2
82
+ - Pytorch 2.2.1+cu121
83
+ - Datasets 2.18.0
84
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1710507153.53c02a32892f.295.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c875c92cdf549b591ba205002bfe8ae6b8eb09320b03f523a58b712d8b9bb7eb
3
- size 13876
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4572aa1ffb6cd5300553614184af1bc0611e57d7c5586b0455b370c8c827f978
3
+ size 14230
logs/events.out.tfevents.1710508962.53c02a32892f.295.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:959c5ec19e9fbe8998caad192d89c0cca5f5dbc32f7c8a81043a89a3a6b17da7
3
+ size 592
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:81e1654839973fb50d9cd0f07d85794e85ac3124ce978e61913e99dfdc5ba623
3
  size 520746020
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd3638d284fb24a11e8ab97eaeecbf1fb8578513c1bc14e292f7690c61221393
3
  size 520746020
preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "LayoutLMv3FeatureExtractor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv3Processor",
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ },
25
+ "tesseract_config": ""
26
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "eos_token": "</s>",
55
+ "errors": "replace",
56
+ "mask_token": "<mask>",
57
+ "model_max_length": 512,
58
+ "only_label_first_subword": true,
59
+ "pad_token": "<pad>",
60
+ "pad_token_box": [
61
+ 0,
62
+ 0,
63
+ 0,
64
+ 0
65
+ ],
66
+ "pad_token_label": -100,
67
+ "processor_class": "LayoutLMv3Processor",
68
+ "sep_token": "</s>",
69
+ "sep_token_box": [
70
+ 0,
71
+ 0,
72
+ 0,
73
+ 0
74
+ ],
75
+ "tokenizer_class": "LayoutLMv3Tokenizer",
76
+ "trim_offsets": true,
77
+ "unk_token": "<unk>"
78
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff