|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""AutoAugment and RandAugment policies for enhanced image preprocessing. |
|
|
|
AutoAugment Reference: https://arxiv.org/abs/1805.09501 |
|
RandAugment Reference: https://arxiv.org/abs/1909.13719 |
|
|
|
This code is forked from |
|
https://github.com/tensorflow/tpu/blob/11d0db15cf1c3667f6e36fecffa111399e008acd/models/official/efficientnet/autoaugment.py |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import dataclasses |
|
import inspect |
|
import math |
|
import tensorflow.compat.v1 as tf |
|
from tensorflow_addons import image as contrib_image |
|
|
|
|
|
|
|
_MAX_LEVEL = 10. |
|
|
|
|
|
@dataclasses.dataclass |
|
class HParams: |
|
"""Parameters for AutoAugment and RandAugment.""" |
|
cutout_const: int |
|
translate_const: int |
|
|
|
|
|
def policy_v0(): |
|
"""Autoaugment policy that was used in AutoAugment Paper.""" |
|
|
|
|
|
|
|
policy = [ |
|
[('Equalize', 0.8, 1), ('ShearY', 0.8, 4)], |
|
[('Color', 0.4, 9), ('Equalize', 0.6, 3)], |
|
[('Color', 0.4, 1), ('Rotate', 0.6, 8)], |
|
[('Solarize', 0.8, 3), ('Equalize', 0.4, 7)], |
|
[('Solarize', 0.4, 2), ('Solarize', 0.6, 2)], |
|
[('Color', 0.2, 0), ('Equalize', 0.8, 8)], |
|
[('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)], |
|
[('ShearX', 0.2, 9), ('Rotate', 0.6, 8)], |
|
[('Color', 0.6, 1), ('Equalize', 1.0, 2)], |
|
[('Invert', 0.4, 9), ('Rotate', 0.6, 0)], |
|
[('Equalize', 1.0, 9), ('ShearY', 0.6, 3)], |
|
[('Color', 0.4, 7), ('Equalize', 0.6, 0)], |
|
[('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)], |
|
[('Solarize', 0.6, 8), ('Color', 0.6, 9)], |
|
[('Solarize', 0.2, 4), ('Rotate', 0.8, 9)], |
|
[('Rotate', 1.0, 7), ('TranslateY', 0.8, 9)], |
|
[('ShearX', 0.0, 0), ('Solarize', 0.8, 4)], |
|
[('ShearY', 0.8, 0), ('Color', 0.6, 4)], |
|
[('Color', 1.0, 0), ('Rotate', 0.6, 2)], |
|
[('Equalize', 0.8, 4), ('Equalize', 0.0, 8)], |
|
[('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)], |
|
[('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)], |
|
[('Posterize', 0.8, 2), ('Solarize', 0.6, 10)], |
|
[('Solarize', 0.6, 8), ('Equalize', 0.6, 1)], |
|
[('Color', 0.8, 6), ('Rotate', 0.4, 5)], |
|
] |
|
return policy |
|
|
|
|
|
def policy_vtest(): |
|
"""Autoaugment test policy for debugging.""" |
|
|
|
|
|
|
|
policy = [ |
|
[('TranslateX', 1.0, 4), ('Equalize', 1.0, 10)], |
|
] |
|
return policy |
|
|
|
|
|
def blend(image1, image2, factor): |
|
"""Blend image1 and image2 using 'factor'. |
|
Factor can be above 0.0. A value of 0.0 means only image1 is used. |
|
A value of 1.0 means only image2 is used. A value between 0.0 and |
|
1.0 means we linearly interpolate the pixel values between the two |
|
images. A value greater than 1.0 "extrapolates" the difference |
|
between the two pixel values, and we clip the results to values |
|
between 0 and 255. |
|
Args: |
|
image1: An image Tensor of type uint8. |
|
image2: An image Tensor of type uint8. |
|
factor: A floating point value above 0.0. |
|
Returns: |
|
A blended image Tensor of type uint8. |
|
""" |
|
if factor == 0.0: |
|
return tf.convert_to_tensor(image1) |
|
if factor == 1.0: |
|
return tf.convert_to_tensor(image2) |
|
|
|
image1 = tf.to_float(image1) |
|
image2 = tf.to_float(image2) |
|
|
|
difference = image2 - image1 |
|
scaled = factor * difference |
|
|
|
|
|
temp = tf.to_float(image1) + scaled |
|
|
|
|
|
if factor > 0.0 and factor < 1.0: |
|
|
|
return tf.cast(temp, tf.uint8) |
|
|
|
|
|
|
|
|
|
return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8) |
|
|
|
|
|
def cutout(image, pad_size, replace=0): |
|
"""Apply cutout (https://arxiv.org/abs/1708.04552) to image. |
|
This operation applies a (2*pad_size x 2*pad_size) mask of zeros to |
|
a random location within `img`. The pixel values filled in will be of the |
|
value `replace`. The located where the mask will be applied is randomly |
|
chosen uniformly over the whole image. |
|
Args: |
|
image: An image Tensor of type uint8. |
|
pad_size: Specifies how big the zero mask that will be generated is that |
|
is applied to the image. The mask will be of size |
|
(2*pad_size x 2*pad_size). |
|
replace: What pixel value to fill in the image in the area that has |
|
the cutout mask applied to it. |
|
Returns: |
|
An image Tensor that is of type uint8. |
|
""" |
|
image_height = tf.shape(image)[0] |
|
image_width = tf.shape(image)[1] |
|
|
|
|
|
cutout_center_height = tf.random_uniform( |
|
shape=[], minval=0, maxval=image_height, |
|
dtype=tf.int32) |
|
|
|
cutout_center_width = tf.random_uniform( |
|
shape=[], minval=0, maxval=image_width, |
|
dtype=tf.int32) |
|
|
|
lower_pad = tf.maximum(0, cutout_center_height - pad_size) |
|
upper_pad = tf.maximum(0, image_height - cutout_center_height - pad_size) |
|
left_pad = tf.maximum(0, cutout_center_width - pad_size) |
|
right_pad = tf.maximum(0, image_width - cutout_center_width - pad_size) |
|
|
|
cutout_shape = [image_height - (lower_pad + upper_pad), |
|
image_width - (left_pad + right_pad)] |
|
padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]] |
|
mask = tf.pad( |
|
tf.zeros(cutout_shape, dtype=image.dtype), |
|
padding_dims, constant_values=1) |
|
mask = tf.expand_dims(mask, -1) |
|
mask = tf.tile(mask, [1, 1, 3]) |
|
image = tf.where( |
|
tf.equal(mask, 0), |
|
tf.ones_like(image, dtype=image.dtype) * replace, |
|
image) |
|
return image |
|
|
|
|
|
def solarize(image, threshold=128): |
|
|
|
|
|
|
|
return tf.where(image < threshold, image, 255 - image) |
|
|
|
|
|
def solarize_add(image, addition=0, threshold=128): |
|
|
|
|
|
|
|
|
|
added_image = tf.cast(image, tf.int64) + addition |
|
added_image = tf.cast(tf.clip_by_value(added_image, 0, 255), tf.uint8) |
|
return tf.where(image < threshold, added_image, image) |
|
|
|
|
|
def color(image, factor): |
|
"""Equivalent of PIL Color.""" |
|
degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image)) |
|
return blend(degenerate, image, factor) |
|
|
|
|
|
def contrast(image, factor): |
|
"""Equivalent of PIL Contrast.""" |
|
degenerate = tf.image.rgb_to_grayscale(image) |
|
|
|
degenerate = tf.cast(degenerate, tf.int32) |
|
|
|
|
|
|
|
|
|
hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256) |
|
mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0 |
|
degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean |
|
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0) |
|
degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8)) |
|
return blend(degenerate, image, factor) |
|
|
|
|
|
def brightness(image, factor): |
|
"""Equivalent of PIL Brightness.""" |
|
degenerate = tf.zeros_like(image) |
|
return blend(degenerate, image, factor) |
|
|
|
|
|
def posterize(image, bits): |
|
"""Equivalent of PIL Posterize.""" |
|
shift = 8 - bits |
|
return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift) |
|
|
|
|
|
def rotate(image, degrees, replace): |
|
"""Rotates the image by degrees either clockwise or counterclockwise. |
|
Args: |
|
image: An image Tensor of type uint8. |
|
degrees: Float, a scalar angle in degrees to rotate all images by. If |
|
degrees is positive the image will be rotated clockwise otherwise it will |
|
be rotated counterclockwise. |
|
replace: A one or three value 1D tensor to fill empty pixels caused by |
|
the rotate operation. |
|
Returns: |
|
The rotated version of image. |
|
""" |
|
|
|
degrees_to_radians = math.pi / 180.0 |
|
radians = degrees * degrees_to_radians |
|
|
|
|
|
|
|
|
|
image = contrib_image.rotate(wrap(image), radians) |
|
return unwrap(image, replace) |
|
|
|
|
|
def translate_x(image, pixels, replace): |
|
"""Equivalent of PIL Translate in X dimension.""" |
|
image = contrib_image.translate(wrap(image), [-pixels, 0]) |
|
return unwrap(image, replace) |
|
|
|
|
|
def translate_y(image, pixels, replace): |
|
"""Equivalent of PIL Translate in Y dimension.""" |
|
image = contrib_image.translate(wrap(image), [0, -pixels]) |
|
return unwrap(image, replace) |
|
|
|
|
|
def shear_x(image, level, replace): |
|
"""Equivalent of PIL Shearing in X dimension.""" |
|
|
|
|
|
|
|
|
|
image = contrib_image.transform( |
|
wrap(image), [1., level, 0., 0., 1., 0., 0., 0.]) |
|
return unwrap(image, replace) |
|
|
|
|
|
def shear_y(image, level, replace): |
|
"""Equivalent of PIL Shearing in Y dimension.""" |
|
|
|
|
|
|
|
|
|
image = contrib_image.transform( |
|
wrap(image), [1., 0., 0., level, 1., 0., 0., 0.]) |
|
return unwrap(image, replace) |
|
|
|
|
|
def autocontrast(image): |
|
"""Implements Autocontrast function from PIL using TF ops. |
|
Args: |
|
image: A 3D uint8 tensor. |
|
Returns: |
|
The image after it has had autocontrast applied to it and will be of type |
|
uint8. |
|
""" |
|
|
|
def scale_channel(image): |
|
"""Scale the 2D image using the autocontrast rule.""" |
|
|
|
|
|
|
|
lo = tf.to_float(tf.reduce_min(image)) |
|
hi = tf.to_float(tf.reduce_max(image)) |
|
|
|
|
|
def scale_values(im): |
|
scale = 255.0 / (hi - lo) |
|
offset = -lo * scale |
|
im = tf.to_float(im) * scale + offset |
|
im = tf.clip_by_value(im, 0.0, 255.0) |
|
return tf.cast(im, tf.uint8) |
|
|
|
result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image) |
|
return result |
|
|
|
|
|
|
|
s1 = scale_channel(image[:, :, 0]) |
|
s2 = scale_channel(image[:, :, 1]) |
|
s3 = scale_channel(image[:, :, 2]) |
|
image = tf.stack([s1, s2, s3], 2) |
|
return image |
|
|
|
|
|
def sharpness(image, factor): |
|
"""Implements Sharpness function from PIL using TF ops.""" |
|
orig_image = image |
|
image = tf.cast(image, tf.float32) |
|
|
|
image = tf.expand_dims(image, 0) |
|
|
|
kernel = tf.constant( |
|
[[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32, |
|
shape=[3, 3, 1, 1]) / 13. |
|
|
|
kernel = tf.tile(kernel, [1, 1, 3, 1]) |
|
strides = [1, 1, 1, 1] |
|
with tf.device('/cpu:0'): |
|
|
|
|
|
degenerate = tf.nn.depthwise_conv2d( |
|
image, kernel, strides, padding='VALID', rate=[1, 1]) |
|
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0) |
|
degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0]) |
|
|
|
|
|
|
|
mask = tf.ones_like(degenerate) |
|
padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]]) |
|
padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]]) |
|
result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image) |
|
|
|
|
|
return blend(result, orig_image, factor) |
|
|
|
|
|
def equalize(image): |
|
"""Implements Equalize function from PIL using TF ops.""" |
|
def scale_channel(im, c): |
|
"""Scale the data in the channel to implement equalize.""" |
|
im = tf.cast(im[:, :, c], tf.int32) |
|
|
|
histo = tf.histogram_fixed_width(im, [0, 255], nbins=256) |
|
|
|
|
|
nonzero = tf.where(tf.not_equal(histo, 0)) |
|
nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1]) |
|
step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255 |
|
|
|
def build_lut(histo, step): |
|
|
|
|
|
lut = (tf.cumsum(histo) + (step // 2)) // step |
|
|
|
lut = tf.concat([[0], lut[:-1]], 0) |
|
|
|
|
|
return tf.clip_by_value(lut, 0, 255) |
|
|
|
|
|
|
|
result = tf.cond(tf.equal(step, 0), |
|
lambda: im, |
|
lambda: tf.gather(build_lut(histo, step), im)) |
|
|
|
return tf.cast(result, tf.uint8) |
|
|
|
|
|
|
|
s1 = scale_channel(image, 0) |
|
s2 = scale_channel(image, 1) |
|
s3 = scale_channel(image, 2) |
|
image = tf.stack([s1, s2, s3], 2) |
|
return image |
|
|
|
|
|
def invert(image): |
|
"""Inverts the image pixels.""" |
|
image = tf.convert_to_tensor(image) |
|
return 255 - image |
|
|
|
|
|
def wrap(image): |
|
"""Returns 'image' with an extra channel set to all 1s.""" |
|
shape = tf.shape(image) |
|
extended_channel = tf.ones([shape[0], shape[1], 1], image.dtype) |
|
extended = tf.concat([image, extended_channel], 2) |
|
return extended |
|
|
|
|
|
def unwrap(image, replace): |
|
"""Unwraps an image produced by wrap. |
|
Where there is a 0 in the last channel for every spatial position, |
|
the rest of the three channels in that spatial dimension are grayed |
|
(set to 128). Operations like translate and shear on a wrapped |
|
Tensor will leave 0s in empty locations. Some transformations look |
|
at the intensity of values to do preprocessing, and we want these |
|
empty pixels to assume the 'average' value, rather than pure black. |
|
Args: |
|
image: A 3D Image Tensor with 4 channels. |
|
replace: A one or three value 1D tensor to fill empty pixels. |
|
Returns: |
|
image: A 3D image Tensor with 3 channels. |
|
""" |
|
image_shape = tf.shape(image) |
|
|
|
flattened_image = tf.reshape(image, [-1, image_shape[2]]) |
|
|
|
|
|
alpha_channel = flattened_image[:, 3] |
|
|
|
replace = tf.concat([replace, tf.ones([1], image.dtype)], 0) |
|
|
|
|
|
flattened_image = tf.where( |
|
tf.equal(alpha_channel, 0), |
|
tf.ones_like(flattened_image, dtype=image.dtype) * replace, |
|
flattened_image) |
|
|
|
image = tf.reshape(flattened_image, image_shape) |
|
image = tf.slice(image, [0, 0, 0], [image_shape[0], image_shape[1], 3]) |
|
return image |
|
|
|
|
|
NAME_TO_FUNC = { |
|
'AutoContrast': autocontrast, |
|
'Equalize': equalize, |
|
'Invert': invert, |
|
'Rotate': rotate, |
|
'Posterize': posterize, |
|
'Solarize': solarize, |
|
'SolarizeAdd': solarize_add, |
|
'Color': color, |
|
'Contrast': contrast, |
|
'Brightness': brightness, |
|
'Sharpness': sharpness, |
|
'ShearX': shear_x, |
|
'ShearY': shear_y, |
|
'TranslateX': translate_x, |
|
'TranslateY': translate_y, |
|
'Cutout': cutout, |
|
} |
|
|
|
|
|
def _randomly_negate_tensor(tensor): |
|
"""With 50% prob turn the tensor negative.""" |
|
should_flip = tf.cast(tf.floor(tf.random_uniform([]) + 0.5), tf.bool) |
|
final_tensor = tf.cond(should_flip, lambda: tensor, lambda: -tensor) |
|
return final_tensor |
|
|
|
|
|
def _rotate_level_to_arg(level): |
|
level = (level/_MAX_LEVEL) * 30. |
|
level = _randomly_negate_tensor(level) |
|
return (level,) |
|
|
|
|
|
def _shrink_level_to_arg(level): |
|
"""Converts level to ratio by which we shrink the image content.""" |
|
if level == 0: |
|
return (1.0,) |
|
|
|
level = 2. / (_MAX_LEVEL / level) + 0.9 |
|
return (level,) |
|
|
|
|
|
def _enhance_level_to_arg(level): |
|
return ((level/_MAX_LEVEL) * 1.8 + 0.1,) |
|
|
|
|
|
def _shear_level_to_arg(level): |
|
level = (level/_MAX_LEVEL) * 0.3 |
|
|
|
level = _randomly_negate_tensor(level) |
|
return (level,) |
|
|
|
|
|
def _translate_level_to_arg(level, translate_const): |
|
level = (level/_MAX_LEVEL) * float(translate_const) |
|
|
|
level = _randomly_negate_tensor(level) |
|
return (level,) |
|
|
|
|
|
def level_to_arg(hparams): |
|
return { |
|
'AutoContrast': lambda level: (), |
|
'Equalize': lambda level: (), |
|
'Invert': lambda level: (), |
|
'Rotate': _rotate_level_to_arg, |
|
'Posterize': lambda level: (int((level/_MAX_LEVEL) * 4),), |
|
'Solarize': lambda level: (int((level/_MAX_LEVEL) * 256),), |
|
'SolarizeAdd': lambda level: (int((level/_MAX_LEVEL) * 110),), |
|
'Color': _enhance_level_to_arg, |
|
'Contrast': _enhance_level_to_arg, |
|
'Brightness': _enhance_level_to_arg, |
|
'Sharpness': _enhance_level_to_arg, |
|
'ShearX': _shear_level_to_arg, |
|
'ShearY': _shear_level_to_arg, |
|
'Cutout': lambda level: (int((level/_MAX_LEVEL) * hparams.cutout_const),), |
|
'TranslateX': lambda level: _translate_level_to_arg( |
|
level, hparams.translate_const), |
|
'TranslateY': lambda level: _translate_level_to_arg( |
|
level, hparams.translate_const), |
|
|
|
} |
|
|
|
|
|
def _parse_policy_info(name, prob, level, replace_value, augmentation_hparams): |
|
"""Return the function that corresponds to `name` and update `level` param.""" |
|
func = NAME_TO_FUNC[name] |
|
args = level_to_arg(augmentation_hparams)[name](level) |
|
|
|
|
|
|
|
|
|
if 'prob' in inspect.getfullargspec(func).args: |
|
args = tuple([prob] + list(args)) |
|
|
|
|
|
|
|
|
|
if 'replace' in inspect.getfullargspec(func).args: |
|
|
|
assert 'replace' == inspect.getfullargspec(func).args[-1] |
|
args = tuple(list(args) + [replace_value]) |
|
|
|
|
|
return (func, prob, args) |
|
|
|
|
|
def _apply_func_with_prob(func, image, args, prob): |
|
"""Apply `func` to image w/ `args` as input with probability `prob`.""" |
|
assert isinstance(args, tuple) |
|
|
|
|
|
|
|
|
|
if 'prob' in inspect.getfullargspec(func).args: |
|
prob = 1.0 |
|
|
|
|
|
|
|
should_apply_op = tf.cast( |
|
tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool) |
|
augmented_image = tf.cond( |
|
should_apply_op, |
|
lambda: func(image, *args), |
|
lambda: image) |
|
return augmented_image |
|
|
|
|
|
def select_and_apply_random_policy(policies, image): |
|
"""Select a random policy from `policies` and apply it to `image`.""" |
|
policy_to_select = tf.random_uniform([], maxval=len(policies), dtype=tf.int32) |
|
|
|
|
|
for (i, policy) in enumerate(policies): |
|
image = tf.cond( |
|
tf.equal(i, policy_to_select), |
|
lambda selected_policy=policy: selected_policy(image), |
|
lambda: image) |
|
return image |
|
|
|
|
|
def build_and_apply_nas_policy(policies, image, |
|
augmentation_hparams): |
|
"""Build a policy from the given policies passed in and apply to image. |
|
Args: |
|
policies: list of lists of tuples in the form `(func, prob, level)`, `func` |
|
is a string name of the augmentation function, `prob` is the probability |
|
of applying the `func` operation, `level` is the input argument for |
|
`func`. |
|
image: tf.Tensor that the resulting policy will be applied to. |
|
augmentation_hparams: Hparams associated with the NAS learned policy. |
|
Returns: |
|
A version of image that now has data augmentation applied to it based on |
|
the `policies` pass into the function. |
|
""" |
|
replace_value = [128, 128, 128] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tf_policies = [] |
|
for policy in policies: |
|
tf_policy = [] |
|
|
|
|
|
for policy_info in policy: |
|
policy_info = list(policy_info) + [replace_value, augmentation_hparams] |
|
|
|
tf_policy.append(_parse_policy_info(*policy_info)) |
|
|
|
|
|
def make_final_policy(tf_policy_): |
|
def final_policy(image_): |
|
for func, prob, args in tf_policy_: |
|
image_ = _apply_func_with_prob( |
|
func, image_, args, prob) |
|
return image_ |
|
return final_policy |
|
tf_policies.append(make_final_policy(tf_policy)) |
|
|
|
augmented_image = select_and_apply_random_policy( |
|
tf_policies, image) |
|
return augmented_image |
|
|
|
|
|
def distort_image_with_autoaugment(image, augmentation_name): |
|
"""Applies the AutoAugment policy to `image`. |
|
AutoAugment is from the paper: https://arxiv.org/abs/1805.09501. |
|
Args: |
|
image: `Tensor` of shape [height, width, 3] representing an image. |
|
augmentation_name: The name of the AutoAugment policy to use. The available |
|
options are `v0` and `test`. `v0` is the policy used for |
|
all of the results in the paper and was found to achieve the best results |
|
on the COCO dataset. `v1`, `v2` and `v3` are additional good policies |
|
found on the COCO dataset that have slight variation in what operations |
|
were used during the search procedure along with how many operations are |
|
applied in parallel to a single image (2 vs 3). |
|
Returns: |
|
A tuple containing the augmented versions of `image`. |
|
""" |
|
available_policies = {'v0': policy_v0, |
|
'test': policy_vtest} |
|
if augmentation_name not in available_policies: |
|
raise ValueError('Invalid augmentation_name: {}'.format(augmentation_name)) |
|
|
|
policy = available_policies[augmentation_name]() |
|
|
|
augmentation_hparams = HParams( |
|
cutout_const=100, translate_const=250) |
|
|
|
return build_and_apply_nas_policy(policy, image, augmentation_hparams) |
|
|
|
|
|
def distort_image_with_randaugment(image, num_layers, magnitude): |
|
"""Applies the RandAugment policy to `image`. |
|
RandAugment is from the paper https://arxiv.org/abs/1909.13719, |
|
Args: |
|
image: `Tensor` of shape [height, width, 3] representing an image. |
|
num_layers: Integer, the number of augmentation transformations to apply |
|
sequentially to an image. Represented as (N) in the paper. Usually best |
|
values will be in the range [1, 3]. |
|
magnitude: Integer, shared magnitude across all augmentation operations. |
|
Represented as (M) in the paper. Usually best values are in the range |
|
[5, 30]. |
|
Returns: |
|
The augmented version of `image`. |
|
""" |
|
replace_value = [128] * 3 |
|
tf.logging.info('Using RandAug.') |
|
augmentation_hparams = HParams( |
|
cutout_const=40, translate_const=100) |
|
available_ops = [ |
|
'AutoContrast', 'Equalize', 'Invert', 'Rotate', 'Posterize', |
|
'Solarize', 'Color', 'Contrast', 'Brightness', 'Sharpness', |
|
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Cutout', 'SolarizeAdd'] |
|
|
|
for layer_num in range(num_layers): |
|
op_to_select = tf.random_uniform( |
|
[], maxval=len(available_ops), dtype=tf.int32) |
|
random_magnitude = float(magnitude) |
|
with tf.name_scope('randaug_layer_{}'.format(layer_num)): |
|
for (i, op_name) in enumerate(available_ops): |
|
prob = tf.random_uniform([], minval=0.2, maxval=0.8, dtype=tf.float32) |
|
func, _, args = _parse_policy_info(op_name, prob, random_magnitude, |
|
replace_value, augmentation_hparams) |
|
image = tf.cond( |
|
tf.equal(i, op_to_select), |
|
lambda selected_func=func, selected_args=args: selected_func( |
|
image, *selected_args), |
|
|
|
lambda: image) |
|
return image |
|
|