pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Creates TFDS dataset for Screen2words.
Preparing the data:
1) mkdir /tmp/data/rico && cd /tmp/data/rico
2) wget https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/unique_uis.tar.gz
3) tar xvfz unique_uis.tar.gz && rm unique_uis.tar.gz
4) git clone https://github.com/google-research-datasets/screen2words.git
Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):
cd big_vision/datasets
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=screen2words
Example to load:
import tensorflow_datasets as tfds
dataset = tfds.load('screen2_words', split='train', data_dir='/tmp/tfds')
"""
# pylint: enable=line-too-long
import collections
import csv
import os
import numpy as np
import tensorflow_datasets as tfds
_DESCRIPTION = """Screen2words dataset."""
_CITATION = """
@inproceedings{wang2021screen2words,
title={Screen2words: Automatic mobile UI summarization with multimodal
learning},
author={Wang, Bryan and
Li, Gang and
Zhou, Xin and
Chen, Zhourong and
Grossman, Tovi and
Li, Yang},
booktitle={The 34th Annual ACM Symposium on User Interface Software
and Technology},
pages={498--510},
year={2021}
}
"""
# When running locally (recommended), copy files as above an use these:
_SCREEN2WORDS_DIR = "/tmp/data/rico/screen2words"
_RICO_DIR = "/tmp/data/rico/combined"
# (name, path) tuples for splits to be generated.
_SPLITS_TO_GENERATE = ["train", "dev", "test"]
class Screen2Words(tfds.core.GeneratorBasedBuilder):
"""DatasetBuilder for the Screen2words dataset."""
VERSION = tfds.core.Version("1.0.0")
RELEASE_NOTES = {"1.0.0": "First release."}
def _info(self):
"""Returns the metadata."""
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
"image/id": tfds.features.Scalar(np.int32),
"image/filename": tfds.features.Text(),
"image": tfds.features.Image(encoding_format="jpeg"),
"summary": tfds.features.Sequence(tfds.features.Text()),
}),
supervised_keys=None,
homepage="https://github.com/google-research-datasets/screen2words",
citation=_CITATION,
)
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
"""Returns SplitGenerators."""
return {split: self._generate_examples(split)
for split in _SPLITS_TO_GENERATE}
def _generate_examples(self, split: str):
"""Yields (key, example) tuples from test set."""
id_list_fname = os.path.join(
_SCREEN2WORDS_DIR, "split", f"{split}_screens.txt")
with open(id_list_fname, "r") as fin:
split_ids = fin.readlines()
summaries_fname = os.path.join(_SCREEN2WORDS_DIR, "screen_summaries.csv")
summaries = collections.defaultdict(list)
with open(summaries_fname, "r") as fin:
for entry in csv.DictReader(fin):
summaries[int(entry["screenId"])].append(entry["summary"])
for line in split_ids:
line = line.strip()
image_id = int(line)
yield image_id, {
"image/id": image_id,
"image/filename": f"{image_id}.jpg",
"image": os.path.join(_RICO_DIR, f"{image_id}.jpg"),
"summary": summaries[image_id],
}