pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Implements RSVQA-LR dataset in TFDS.
Remote sensing visual question answering task, using low-resolution satellite
(Sentinel-2) RGB channels data at 10m resolution per pixel.
It's small dataset at source (200M), so simple to run locally.
First, download and unzip the dataset from https://zenodo.org/records/6344334
and place it in /tmp/data/rsvqa_lr.
Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):
cd third_party/py/big_vision/datasets
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=rsvqa_lr
Example to load:
import tensorflow_datasets as tfds
dataset = tfds.load('rsvqa_lr', split='train', data_dir='/tmp/tfds')
Dataset splits:
train: 57223 examples/questions
val: 10005 examples/questions
test: 10004 examples/questions
And the same splits are available excluding numeric questions:
train_nonum: 39441 examples/questions
val_nonum: 6782 examples/questions
test_nonum: 6782 examples/questions
Note: due to image duplication with each question, the dataset size is
significatnly increased by the number of questions per image.
Recommended training splits:
train: train
minitrain: train[:5%]
eval: val
full_train: train+val
test: test
Image sizes: 256x256
Number of answers per question: 1
Question types distribution in train split:
- Comparison(comp): 39.4%
- Count (count): 29.9% (integers, binned at evaluation into
{0, 1-10, 11-100, 101-1000, >10000})
- Presence (presence): 29.7%
- Rural/Urban (rural_urban): 1%
"""
import io
import json
import os
import numpy as np
import tensorflow_datasets as tfds
_DESCRIPTION = """RSVQA-LR dataset."""
# pylint: disable=line-too-long
_CITATION = """
@article{Lobry_2020,
title={RSVQA: Visual Question Answering for Remote Sensing Data},
volume={58},
ISSN={1558-0644},
url={http://dx.doi.org/10.1109/TGRS.2020.2988782},
DOI={10.1109/tgrs.2020.2988782},
number={12},
journal={IEEE Transactions on Geoscience and Remote Sensing},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Lobry, Sylvain and Marcos, Diego and Murray, Jesse and Tuia, Devis},
year={2020},
month=dec, pages={8555–8566} }
"""
# pylint: enable=line-too-long
# When running locally (recommended), copy files as above an use these:
PATH = '/tmp/data/rsvqa_lr/'
class RsvqaLrConfig(tfds.core.BuilderConfig):
"""Config to specify each variant."""
def __init__(self, nonum, **kwargs):
name = 'nonum' if nonum else 'all'
super(RsvqaLrConfig, self).__init__(name=name, **kwargs)
self.nonum = nonum
class RsvqaLr(tfds.core.GeneratorBasedBuilder):
"""DatasetBuilder for RSVQA-LR dataset."""
VERSION = tfds.core.Version('1.0.2')
RELEASE_NOTES = {
'1.0.0': 'First release.',
'1.0.1': 'Rename binned values.',
'1.0.2': 'Removed explicit png image encoding.',
}
BUILDER_CONFIGS = [
RsvqaLrConfig(nonum=False),
RsvqaLrConfig(nonum=True),
]
def _info(self):
"""Returns the metadata."""
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
'question_id': tfds.features.Scalar(np.int32),
'filename': tfds.features.Text(),
'image': tfds.features.Image(),
'question': tfds.features.Text(),
'question_type': tfds.features.Text(),
'answers': tfds.features.Sequence(tfds.features.Text()),
'raw_answers': tfds.features.Sequence(tfds.features.Text()),
}),
supervised_keys=None,
homepage='https://rsvqa.sylvainlobry.com/',
citation=_CITATION,
)
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
"""Returns SplitGenerators."""
return {
split: self._generate_examples(split)
for split in ('train', 'val', 'test')
}
def _generate_examples(self, split):
"""Yields (key, example) tuples."""
questions_path = os.path.join(PATH + f'LR_split_{split}_questions.json')
answers_path = os.path.join(PATH + f'LR_split_{split}_answers.json')
images_path = os.path.join(PATH + 'Images_LR')
with open(questions_path, 'r') as f:
questions = json.loads(f.read())['questions']
with open(answers_path, 'r') as f:
answers = json.loads(f.read())['answers']
for q, a in zip(questions, answers):
assert q['active'] == a['active']
if not q['active']:
continue
if self.builder_config.nonum and q['type'] == 'count':
continue
assert q['answers_ids'] == [a['id']]
assert q['id'] == a['question_id']
filename = f'{q["img_id"]}.tif'
img = read_tif(os.path.join(images_path, filename))
yield q['id'], {
'question_id': q['id'],
'filename': filename,
'image': img,
'question': q['question'],
'question_type': q['type'],
'answers': [bin_answer(a['answer'], q['type'])],
'raw_answers': [a['answer']],
}
def bin_answer(answer, question_type):
"""Bins answers into expected ranges."""
if question_type == 'count':
count = int(answer)
if count == 0:
return '0'
elif count <= 10:
return 'between 1 and 10'
elif count <= 100:
return 'between 11 and 100'
elif count <= 1000:
return 'between 101 and 1000'
else:
return 'more than 1000'
return answer
def read_tif(path):
with open(path, 'rb') as f:
img = tfds.core.lazy_imports.tifffile.imread(io.BytesIO(f.read()))
return img.astype(np.uint8)