File size: 6,219 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Implements RSVQA-LR dataset in TFDS.

Remote sensing visual question answering task, using low-resolution satellite
(Sentinel-2) RGB channels data at 10m resolution per pixel.

It's small dataset at source (200M), so simple to run locally.
First, download and unzip the dataset from https://zenodo.org/records/6344334
and place it in /tmp/data/rsvqa_lr.

Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):

  cd third_party/py/big_vision/datasets
  env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=rsvqa_lr

Example to load:

  import tensorflow_datasets as tfds
  dataset = tfds.load('rsvqa_lr', split='train', data_dir='/tmp/tfds')

Dataset splits:
  train: 57223 examples/questions
  val: 10005 examples/questions
  test: 10004 examples/questions
And the same splits are available excluding numeric questions:
  train_nonum: 39441 examples/questions
  val_nonum: 6782 examples/questions
  test_nonum: 6782 examples/questions

Note: due to image duplication with each question, the dataset size is
significatnly increased by the number of questions per image.

Recommended training splits:
  train: train
  minitrain: train[:5%]
  eval: val
  full_train: train+val
  test: test

Image sizes: 256x256
Number of answers per question: 1
Question types distribution in train split:
  - Comparison(comp): 39.4%
  - Count (count): 29.9%  (integers, binned at evaluation into
    {0, 1-10, 11-100, 101-1000, >10000})
  - Presence (presence): 29.7%
  - Rural/Urban (rural_urban): 1%
"""
import io
import json
import os

import numpy as np
import tensorflow_datasets as tfds


_DESCRIPTION = """RSVQA-LR dataset."""

# pylint: disable=line-too-long
_CITATION = """
@article{Lobry_2020,
   title={RSVQA: Visual Question Answering for Remote Sensing Data},
   volume={58},
   ISSN={1558-0644},
   url={http://dx.doi.org/10.1109/TGRS.2020.2988782},
   DOI={10.1109/tgrs.2020.2988782},
   number={12},
   journal={IEEE Transactions on Geoscience and Remote Sensing},
   publisher={Institute of Electrical and Electronics Engineers (IEEE)},
   author={Lobry, Sylvain and Marcos, Diego and Murray, Jesse and Tuia, Devis},
   year={2020},
   month=dec, pages={8555–8566} }
"""
# pylint: enable=line-too-long

# When running locally (recommended), copy files as above an use these:
PATH = '/tmp/data/rsvqa_lr/'


class RsvqaLrConfig(tfds.core.BuilderConfig):
  """Config to specify each variant."""

  def __init__(self, nonum, **kwargs):
    name = 'nonum' if nonum else 'all'
    super(RsvqaLrConfig, self).__init__(name=name, **kwargs)
    self.nonum = nonum


class RsvqaLr(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for RSVQA-LR dataset."""

  VERSION = tfds.core.Version('1.0.2')
  RELEASE_NOTES = {
      '1.0.0': 'First release.',
      '1.0.1': 'Rename binned values.',
      '1.0.2': 'Removed explicit png image encoding.',
      }

  BUILDER_CONFIGS = [
      RsvqaLrConfig(nonum=False),
      RsvqaLrConfig(nonum=True),
  ]

  def _info(self):
    """Returns the metadata."""

    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            'question_id': tfds.features.Scalar(np.int32),
            'filename': tfds.features.Text(),
            'image': tfds.features.Image(),
            'question': tfds.features.Text(),
            'question_type': tfds.features.Text(),
            'answers': tfds.features.Sequence(tfds.features.Text()),
            'raw_answers': tfds.features.Sequence(tfds.features.Text()),
        }),
        supervised_keys=None,
        homepage='https://rsvqa.sylvainlobry.com/',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    """Returns SplitGenerators."""
    return {
        split: self._generate_examples(split)
        for split in ('train', 'val', 'test')
    }

  def _generate_examples(self, split):
    """Yields (key, example) tuples."""
    questions_path = os.path.join(PATH + f'LR_split_{split}_questions.json')
    answers_path = os.path.join(PATH + f'LR_split_{split}_answers.json')
    images_path = os.path.join(PATH + 'Images_LR')

    with open(questions_path, 'r') as f:
      questions = json.loads(f.read())['questions']
    with open(answers_path, 'r') as f:
      answers = json.loads(f.read())['answers']

    for q, a in zip(questions, answers):
      assert q['active'] == a['active']
      if not q['active']:
        continue
      if self.builder_config.nonum and q['type'] == 'count':
        continue
      assert q['answers_ids'] == [a['id']]
      assert q['id'] == a['question_id']

      filename = f'{q["img_id"]}.tif'
      img = read_tif(os.path.join(images_path, filename))
      yield q['id'], {
          'question_id': q['id'],
          'filename': filename,
          'image': img,
          'question': q['question'],
          'question_type': q['type'],
          'answers': [bin_answer(a['answer'], q['type'])],
          'raw_answers': [a['answer']],
      }


def bin_answer(answer, question_type):
  """Bins answers into expected ranges."""
  if question_type == 'count':
    count = int(answer)
    if count == 0:
      return '0'
    elif count <= 10:
      return 'between 1 and 10'
    elif count <= 100:
      return 'between 11 and 100'
    elif count <= 1000:
      return 'between 101 and 1000'
    else:
      return 'more than 1000'
  return answer


def read_tif(path):
  with open(path, 'rb') as f:
    img = tfds.core.lazy_imports.tifffile.imread(io.BytesIO(f.read()))
  return img.astype(np.uint8)