|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Pre-training ViT-S/16 on ILSVRC-2012 following https://arxiv.org/abs/2205.01580. |
|
|
|
This should take 6-7h to finish 90ep on a TPU-v3-8 and reach 76.5%, |
|
see the tech report for more details. |
|
|
|
Command to run: |
|
|
|
big_vision.train \ |
|
--config big_vision/configs/vit_s16_i1k.py \ |
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` |
|
|
|
To run for 300ep, add `--config.total_epochs 300` to the command. |
|
""" |
|
|
|
import ml_collections as mlc |
|
|
|
|
|
def get_config(): |
|
"""Config for training.""" |
|
config = mlc.ConfigDict() |
|
|
|
config.seed = 0 |
|
config.total_epochs = 90 |
|
config.num_classes = 1000 |
|
config.loss = 'softmax_xent' |
|
|
|
config.input = {} |
|
config.input.data = dict( |
|
name='imagenet2012', |
|
split='train[:99%]', |
|
) |
|
config.input.batch_size = 1024 |
|
config.input.cache_raw = True |
|
config.input.shuffle_buffer_size = 250_000 |
|
|
|
pp_common = ( |
|
'|value_range(-1, 1)' |
|
'|onehot(1000, key="{lbl}", key_result="labels")' |
|
'|keep("image", "labels")' |
|
) |
|
config.input.pp = ( |
|
'decode_jpeg_and_inception_crop(224)|flip_lr|randaug(2,10)' + |
|
pp_common.format(lbl='label') |
|
) |
|
pp_eval = 'decode|resize_small(256)|central_crop(224)' + pp_common |
|
|
|
|
|
config.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'archive.randaug'] |
|
|
|
config.log_training_steps = 50 |
|
config.ckpt_steps = 1000 |
|
|
|
|
|
config.model_name = 'vit' |
|
config.model = dict( |
|
variant='S/16', |
|
rep_size=True, |
|
pool_type='gap', |
|
posemb='sincos2d', |
|
) |
|
|
|
|
|
config.grad_clip_norm = 1.0 |
|
config.optax_name = 'scale_by_adam' |
|
config.optax = dict(mu_dtype='bfloat16') |
|
|
|
config.lr = 0.001 |
|
config.wd = 0.0001 |
|
config.schedule = dict(warmup_steps=10_000, decay_type='cosine') |
|
|
|
config.mixup = dict(p=0.2, fold_in=None) |
|
|
|
|
|
def get_eval(split, dataset='imagenet2012'): |
|
return dict( |
|
type='classification', |
|
data=dict(name=dataset, split=split), |
|
pp_fn=pp_eval.format(lbl='label'), |
|
loss_name=config.loss, |
|
log_steps=2500, |
|
) |
|
config.evals = {} |
|
config.evals.train = get_eval('train[:2%]') |
|
config.evals.minival = get_eval('train[99%:]') |
|
config.evals.val = get_eval('validation') |
|
config.evals.v2 = get_eval('test', dataset='imagenet_v2') |
|
config.evals.real = get_eval('validation', dataset='imagenet2012_real') |
|
config.evals.real.pp_fn = pp_eval.format(lbl='real_label') |
|
|
|
return config |
|
|