|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Pre-training BiT on ILSVRC-2012 as in https://arxiv.org/abs/1912.11370 |
|
|
|
Run training of a BiT-ResNet-50x1 variant, which takes ~32min on v3-128: |
|
|
|
big_vision.train \ |
|
--config big_vision/configs/bit_i1k.py \ |
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \ |
|
--config.model.depth 50 --config.model.width 1 |
|
""" |
|
|
|
|
|
import ml_collections as mlc |
|
|
|
|
|
def get_config(runlocal=False): |
|
"""Config for training on ImageNet-1k.""" |
|
config = mlc.ConfigDict() |
|
|
|
config.seed = 0 |
|
config.total_epochs = 90 |
|
config.num_classes = 1000 |
|
config.loss = 'softmax_xent' |
|
|
|
config.input = dict() |
|
config.input.data = dict( |
|
name='imagenet2012', |
|
split='train[:99%]', |
|
) |
|
config.input.batch_size = 4096 |
|
config.input.cache_raw = True |
|
config.input.shuffle_buffer_size = 250_000 |
|
|
|
pp_common = '|onehot(1000, key="{lbl}", key_result="labels")' |
|
pp_common += '|value_range(-1, 1)|keep("image", "labels")' |
|
config.input.pp = 'decode_jpeg_and_inception_crop(224)|flip_lr' + pp_common.format(lbl='label') |
|
pp_eval = 'decode|resize_small(256)|central_crop(224)' + pp_common |
|
|
|
config.log_training_steps = 50 |
|
config.ckpt_steps = 1000 |
|
|
|
|
|
config.model_name = 'bit' |
|
config.model = dict( |
|
depth=50, |
|
width=1.0, |
|
) |
|
|
|
|
|
config.optax_name = 'big_vision.momentum_hp' |
|
config.grad_clip_norm = 1.0 |
|
|
|
|
|
config.wd = (1e-4 / 256) * config.input.batch_size |
|
config.lr = (0.1 / 256) * config.input.batch_size |
|
config.schedule = dict(decay_type='cosine', warmup_steps=1000) |
|
|
|
|
|
def get_eval(split, dataset='imagenet2012'): |
|
return dict( |
|
type='classification', |
|
data=dict(name=dataset, split=split), |
|
pp_fn=pp_eval.format(lbl='label'), |
|
loss_name=config.loss, |
|
log_steps=1000, |
|
cache='final_data', |
|
) |
|
config.evals = {} |
|
config.evals.train = get_eval('train[:2%]') |
|
config.evals.minival = get_eval('train[99%:]') |
|
config.evals.val = get_eval('validation') |
|
config.evals.v2 = get_eval('test', dataset='imagenet_v2') |
|
config.evals.real = get_eval('validation', dataset='imagenet2012_real') |
|
config.evals.real.pp_fn = pp_eval.format(lbl='real_label') |
|
|
|
|
|
|
|
|
|
if runlocal: |
|
config.input.batch_size = 32 |
|
config.input.cache_raw = False |
|
config.input.shuffle_buffer_size = 100 |
|
|
|
local_eval = config.evals.val |
|
config.evals = {'val': local_eval} |
|
config.evals.val.cache = 'none' |
|
|
|
return config |