File size: 12,386 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image-centric preprocessing ops.
All preprocessing ops should return a data processing functors. A data
is represented as a dictionary of (TF) tensors. The functors output a modified
dictionary.
The key named "image" is commonly used for the image, and is a 3D tensor of
shape (height x width x channels).
"""
from big_vision.pp import utils
from big_vision.pp.registry import Registry
import tensorflow as tf
@Registry.register("preprocess_ops.decode")
@utils.InKeyOutKey()
def get_decode(channels=3, precise=False):
"""Decode an encoded image string, see tf.io.decode_image.
Args:
channels: see tf.io.decode_image.
precise: if False, use default TF image decoding algorithm.
If True, change DCT method for JPEG decoding to match PIL/cv2/PyTorch.
See also (internal link) for a concrete example.
Returns:
The decoded image.
"""
def _decode(image):
if precise:
return tf.image.decode_jpeg( # Also supports png btw.
image, channels=channels, dct_method="INTEGER_ACCURATE")
else:
return tf.io.decode_image(
image, channels=channels, expand_animations=False)
return _decode
@Registry.register("preprocess_ops.resize")
@utils.InKeyOutKey()
def get_resize(size, method="bilinear", antialias=False):
"""Resizes image to a given size.
Args:
size: either an integer H, where H is both the new height and width
of the resized image, or a list or tuple [H, W] of integers, where H and W
are new image"s height and width respectively.
method: resize method, see tf.image.resize docs for options.
antialias: see tf.image.resize. Ideally set to True for all new configs.
Returns:
A function for resizing an image.
"""
size = utils.maybe_repeat(size, 2)
def _resize(image):
"""Resizes image to a given size."""
# Note: use TF-2 version of tf.image.resize as the version in TF-1 is
# buggy: https://github.com/tensorflow/tensorflow/issues/6720.
# In particular it was not equivariant with rotation and lead to the network
# to learn a shortcut in self-supervised rotation task, if rotation was
# applied after resize.
dtype = image.dtype
tf_dtype = tf.type_spec_from_value(image).dtype
image = tf.image.resize(image, size, method=method, antialias=antialias)
return tf.cast(tf.clip_by_value(image, tf_dtype.min, tf_dtype.max), dtype)
return _resize
# This functionality is used by resize_small and resize_long. But we're not
# registering it as a pp op yet, as there is no need for it. However, it can
# probably be slightly generalized into "scale augmentation" eventually.
def _resize_factor(image, factor, method="area", antialias=True):
"""Resizes the image by a (float) `factor`, keeping the aspect ratio fixed."""
h, w = tf.shape(image)[0], tf.shape(image)[1]
h = tf.cast(tf.round(tf.cast(h, tf.float32) * factor), tf.int32)
w = tf.cast(tf.round(tf.cast(w, tf.float32) * factor), tf.int32)
dtype = image.dtype
tf_dtype = tf.type_spec_from_value(image).dtype
image = tf.image.resize(image, (h, w), method=method, antialias=antialias)
return tf.cast(tf.clip_by_value(image, tf_dtype.min, tf_dtype.max), dtype)
@Registry.register("preprocess_ops.resize_small")
@utils.InKeyOutKey()
def get_resize_small(smaller_size, method="area", antialias=False):
"""Resizes the smaller side to `smaller_size` keeping aspect ratio.
Args:
smaller_size: an integer, that represents a new size of the smaller side of
an input image.
method: the resize method. `area` is a meaningful, bwd-compat default.
antialias: see tf.image.resize. Ideally set to True for all new configs.
Returns:
A function, that resizes an image and preserves its aspect ratio.
Note:
backwards-compat for "area"+antialias tested here:
(internal link)
"""
def _resize_small(image): # pylint: disable=missing-docstring
h, w = tf.shape(image)[0], tf.shape(image)[1]
factor = (
tf.cast(smaller_size, tf.float32) /
tf.cast(tf.minimum(h, w), tf.float32))
return _resize_factor(image, factor, method=method, antialias=antialias)
return _resize_small
@Registry.register("preprocess_ops.resize_long")
@utils.InKeyOutKey()
def get_resize_long(longer_size, method="area", antialias=True):
"""Resizes the longer side to `longer_size` keeping aspect ratio.
Args:
longer_size: an integer, that represents a new size of the longer side of
an input image.
method: the resize method. `area` is a meaningful, bwd-compat default.
antialias: see tf.image.resize. Ideally set to True for all new configs.
Returns:
A function, that resizes an image and preserves its aspect ratio.
"""
def _resize_long(image): # pylint: disable=missing-docstring
h, w = tf.shape(image)[0], tf.shape(image)[1]
factor = (
tf.cast(longer_size, tf.float32) /
tf.cast(tf.maximum(h, w), tf.float32))
return _resize_factor(image, factor, method=method, antialias=antialias)
return _resize_long
@Registry.register("preprocess_ops.inception_crop")
@utils.InKeyOutKey()
def get_inception_crop(size=None, area_min=5, area_max=100,
method="bilinear", antialias=False):
"""Makes inception-style image crop.
Inception-style crop is a random image crop (its size and aspect ratio are
random) that was used for training Inception models, see
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf.
Args:
size: Resize image to [size, size] after crop.
area_min: minimal crop area.
area_max: maximal crop area.
method: rezied method, see tf.image.resize docs for options.
antialias: see tf.image.resize. Ideally set to True for all new configs.
Returns:
A function, that applies inception crop.
"""
def _inception_crop(image): # pylint: disable=missing-docstring
begin, crop_size, _ = tf.image.sample_distorted_bounding_box(
tf.shape(image),
tf.zeros([0, 0, 4], tf.float32),
area_range=(area_min / 100, area_max / 100),
min_object_covered=0, # Don't enforce a minimum area.
use_image_if_no_bounding_boxes=True)
crop = tf.slice(image, begin, crop_size)
# Unfortunately, the above operation loses the depth-dimension. So we need
# to restore it the manual way.
crop.set_shape([None, None, image.shape[-1]])
if size:
crop = get_resize(size, method, antialias)({"image": crop})["image"]
return crop
return _inception_crop
@Registry.register("preprocess_ops.decode_jpeg_and_inception_crop")
@utils.InKeyOutKey()
def get_decode_jpeg_and_inception_crop(size=None, area_min=5, area_max=100,
ratio_min=0.75, ratio_max=1.33,
method="bilinear", antialias=False):
"""Decode jpeg string and make inception-style image crop.
Inception-style crop is a random image crop (its size and aspect ratio are
random) that was used for training Inception models, see
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf.
Args:
size: Resize image to [size, size] after crop.
area_min: minimal crop area.
area_max: maximal crop area.
ratio_min: minimal aspect ratio.
ratio_max: maximal aspect ratio.
method: rezied method, see tf.image.resize docs for options.
antialias: see tf.image.resize. Ideally set to True for all new configs.
Returns:
A function, that applies inception crop.
"""
def _inception_crop(image_data): # pylint: disable=missing-docstring
shape = tf.image.extract_jpeg_shape(image_data)
begin, crop_size, _ = tf.image.sample_distorted_bounding_box(
shape,
tf.zeros([0, 0, 4], tf.float32),
area_range=(area_min / 100, area_max / 100),
aspect_ratio_range=(ratio_min, ratio_max),
min_object_covered=0, # Don't enforce a minimum area.
use_image_if_no_bounding_boxes=True)
# Crop the image to the specified bounding box.
offset_y, offset_x, _ = tf.unstack(begin)
target_height, target_width, _ = tf.unstack(crop_size)
crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
image = tf.image.decode_and_crop_jpeg(image_data, crop_window, channels=3)
if size:
image = get_resize(size, method, antialias)({"image": image})["image"]
return image
return _inception_crop
@Registry.register("preprocess_ops.random_crop")
@utils.InKeyOutKey()
def get_random_crop(crop_size):
"""Makes a random crop of a given size.
Args:
crop_size: either an integer H, where H is both the height and width of the
random crop, or a list or tuple [H, W] of integers, where H and W are
height and width of the random crop respectively.
Returns:
A function, that applies random crop.
"""
crop_size = utils.maybe_repeat(crop_size, 2)
def _crop(image):
return tf.image.random_crop(image, (*crop_size, image.shape[-1]))
return _crop
@Registry.register("preprocess_ops.central_crop")
@utils.InKeyOutKey()
def get_central_crop(crop_size=None):
"""Makes central crop of a given size.
Args:
crop_size: either an integer H, where H is both the height and width of the
central crop, or a list or tuple [H, W] of integers, where H and W are
height and width of the central crop respectively. If `crop_size` is not
specified, then the largest possible center crop will be taken.
Returns:
A function, that applies central crop.
"""
if crop_size:
crop_size = utils.maybe_repeat(crop_size, 2)
def _crop(image):
if crop_size:
h, w = crop_size[0], crop_size[1]
else:
h = w = tf.minimum(tf.shape(image)[0], tf.shape(image)[1])
dy = (tf.shape(image)[0] - h) // 2
dx = (tf.shape(image)[1] - w) // 2
return tf.image.crop_to_bounding_box(image, dy, dx, h, w)
return _crop
@Registry.register("preprocess_ops.flip_lr")
@utils.InKeyOutKey()
def get_random_flip_lr():
"""Flips an image horizontally with probability 50%."""
def _random_flip_lr_pp(image):
return tf.image.random_flip_left_right(image)
return _random_flip_lr_pp
@Registry.register("preprocess_ops.vgg_value_range")
@utils.InKeyOutKey()
def get_vgg_value_range(
mean=(0.485 * 255, 0.456 * 255, 0.406 * 255),
std=(0.229 * 255, 0.224 * 255, 0.225 * 255),
):
"""VGG-style preprocessing, subtracts mean and divides by stddev.
This preprocessing is very common for ImageNet pre-trained models since VGG,
and to this day the standard for models coming from most PyTorch codes.
Args:
mean: Tuple of values to be subtracted. Default to widespread VGG values.
std: Tuple of values to be divided by. Default to widespread VGG values.
Returns:
A function to rescale the values.
"""
mean = tf.constant(mean, tf.float32)
std = tf.constant(std, tf.float32)
def _vgg_value_range(image):
return (tf.cast(image, tf.float32) - mean) / std
return _vgg_value_range
@Registry.register("preprocess_ops.clip_value_range")
@utils.InKeyOutKey()
def get_clip_value_range():
mean = (0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255)
std = (0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255)
def _clip_value_range(image):
return (tf.cast(image, tf.float32) - mean) / std
return _clip_value_range
@Registry.register("preprocess_ops.convert_to_video")
@utils.InKeyOutKey()
def get_convert_to_video(num_frames):
"""Converts an image to a video with zero padded frames.
Args:
num_frames: total number of frames that the video should have.
Returns:
A function for converting an image to a video.
"""
def _convert_to_video(image):
return tf.pad(
tf.expand_dims(image, axis=0),
[[0, num_frames - 1], [0, 0], [0, 0], [0, 0]],
)
return _convert_to_video
|