File size: 5,257 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Import widgetcap into TFDS format.

  Widget Captioning all requires images from the RICO dataset:
  mkdir -p /tmp/data/rico_images ; cd /tmp/data/rico_images
  wget
  https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/unique_uis.tar.gz
  tar xvfz unique_uis.tar.gz
  rm unique_uis.tar.gz

  Widget Captioning:
  mkdir - /tmp/data/widget_captioning ; cd /tmp/data/widget_captioning
  git clone https://github.com/google-research-datasets/widget-caption.git
  cp widget-caption/widget_captions.csv ./
  cp widget-caption/split/*.txt ./
  rm -rf widget-caption

Then, run conversion locally (make sure to install tensorflow-datasets for the
`tfds` util):

  cd big_vision/datasets
  env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=widgetcap

Example to load:

  import tensorflow_datasets as tfds
  dataset_augmented = tfds.load('widgetcap', split='train',
  data_dir='/tmp/tfds')
"""
import csv
import json
import os

import numpy as np
from PIL import Image
import tensorflow_datasets as tfds

_DATASET_DIR = '/tmp/data/widget_captioning'
# Dataset property indicating the y-dim of the canvas
_RICO_CANVAS_Y = 2560
_IMAGE_DIR = '/tmp/data/rico_images/combined'

_CITATION = (
    '@inproceedings{Li2020WidgetCG,title={Widget Captioning: Generating Natural'
    ' Language Description for MobileUser Interface Elements},author={Y. Li and'
    ' Gang Li and Luheng He and Jingjie Zheng and Hong Li and Zhiwei'
    ' Guan},booktitle={Conference on Empirical Methods in Natural Language'
    ' Processing},year={2020},}'
)


class Widgetcap(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for widgetcap dataset."""

  VERSION = tfds.core.Version('1.0.0')
  RELEASE_NOTES = {'1.0.0': 'Format as needed for PaliGemma'}

  def _info(self) -> tfds.core.DatasetInfo:
    """Returns the metadata."""

    return tfds.core.DatasetInfo(
        builder=self,
        description='The widgetcap dataset.',
        features=tfds.features.FeaturesDict({
            'image/id': tfds.features.Text(),
            'image/filename': tfds.features.Text(),
            'image': tfds.features.Image(encoding_format='jpeg'),
            'texts': tfds.features.Sequence(tfds.features.Text()),
            'bbox': tfds.features.BBoxFeature(),
            'screen_id': tfds.features.Text(),
            'node_id': tfds.features.Text(),
            'height': np.int32,
            'width': np.int32,
        }),
        homepage='https://github.com/google-research-datasets/widget-caption',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    """Returns SplitGenerators."""
    return {
        'train': self._generate_examples('train'),
        'dev': self._generate_examples('dev'),
        'test': self._generate_examples('test'),
    }

  def _generate_examples(self, split):
    """Yields (key, example) tuples from the dataset."""
    split_screen_ids = set()
    with open(os.path.join(_DATASET_DIR, split + '.txt')) as f:
      for line in f:
        split_screen_ids.add(line.strip())

    with open(os.path.join(_DATASET_DIR, 'widget_captions.csv')) as f:
      for row in csv.DictReader(f):
        if row['screenId'] in split_screen_ids:
          id_, example = self._get_example(
              row['screenId'], row['nodeId'], row['captions']
          )
          yield id_, example

  def _get_node_box(self, screen_id, node_id, height):
    index_list = [int(i) for i in node_id.split('.')[1:]]
    with open(os.path.join(_IMAGE_DIR, screen_id + '.json')) as f:
      view = json.load(f)
    curr_node = view['activity']['root']
    for index in index_list:
      curr_node = curr_node['children'][index]
    normalized_bounds = map(
        lambda x: x * height / _RICO_CANVAS_Y, curr_node['bounds']
    )
    return normalized_bounds

  def _get_example(self, screen_id, node_id, captions):
    image = Image.open(os.path.join(_IMAGE_DIR, screen_id + '.jpg'))
    width, height = image.size
    # get bounding box coordinates
    xmin, ymin, xmax, ymax = self._get_node_box(screen_id, node_id, height)

    image_id = f'{screen_id}_{node_id}'
    example = {
        'image/id': image_id,
        'image/filename': screen_id + '.jpg',
        'image': os.path.join(_IMAGE_DIR, screen_id + '.jpg'),
        'texts': captions.split('|'),
        'bbox': tfds.features.BBox(
            ymin=ymin / height,
            xmin=xmin / width,
            ymax=ymax / height,
            xmax=xmax / width,
        ),
        'screen_id': screen_id,
        'node_id': node_id,
        'height': height,
        'width': width,
    }
    return image_id, example