File size: 6,068 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Pre-training ViT on ILSVRC-2012 as in https://arxiv.org/abs/2106.10270

This config does NOT include regularization (dropout, stochastic depth), which
was shown to help with B/32, B/16, L/16 models in the paper (Figure 4).

This configuration makes use of the "arg" to get_config to select which model
to run, so a few examples are given below:

Run training of a B/16 model:

big_vision.train \
    --config big_vision/configs/vit_i1k.py:variant=B/16 \
    --workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'`

Run training of a B/32 model with custom aug-strenght and 300ep:

big_vision.train \
    --config big_vision/configs/vit_i1k.py:variant=B/32,aug=light1 \
    --workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \
    --config.total_epochs 300
"""

import big_vision.configs.common as bvcc
from big_vision.configs.common_fewshot import get_fewshot_lsr
import ml_collections as mlc

MIXUP_DEF = {
    'none': dict(p=0.0, fold_in=None),
    'light1': dict(p=0.0, fold_in=None),
    'light2': dict(p=0.2, fold_in=None),
    'medium1': dict(p=0.2, fold_in=None),
    'medium2': dict(p=0.5, fold_in=None),
    'strong1': dict(p=0.5, fold_in=None),
    'strong2': dict(p=0.8, fold_in=None),
}

RANDAUG_DEF = {
    'none': '',
    'light1': 'randaug(2,0)',  # Actually not nothing!
    'light2': 'randaug(2,10)',
    'medium1': 'randaug(2,15)',
    'medium2': 'randaug(2,15)',
    'strong1': 'randaug(2,20)',
    'strong2': 'randaug(2,20)',
}


def get_config(arg=None):
  """Config for training."""
  arg = bvcc.parse_arg(arg, variant='B/16', runlocal=False, aug='')
  config = mlc.ConfigDict()

  config.seed = 0
  config.total_epochs = 300
  config.num_classes = 1000
  config.loss = 'sigmoid_xent'
  config.init_head_bias = -6.9

  # If this gives a KeyError, lookup Fig4 of the paper and add an entry.
  # Note, this here is a good average between 30ep and 300ep, sometimes you coud
  # find a slightly better setting for either of them.
  aug_setting = arg.aug or {
      'Ti/16': 'light1',
      'S/32': 'medium1',
      'S/16': 'medium2',
      'B/32': 'medium2',
      'B/16': 'medium2',
      'L/16': 'medium2',
  }[arg.variant]

  config.input = dict()
  config.input.data = dict(
      name='imagenet2012',
      split='train[:99%]',
  )
  config.input.batch_size = 4096
  config.input.cache = 'raw_data' if arg.runlocal else 'none'  # Needs up to 120GB of RAM!
  config.input.shuffle_buffer_size = 250_000

  pp_common = (
      '|value_range(-1, 1)'
      '|onehot(1000, key="{lbl}", key_result="labels")'
      '|keep("image", "labels")'
  )
  config.input.pp = (
      'decode_jpeg_and_inception_crop(224)|flip_lr|' +
      RANDAUG_DEF[aug_setting] +
      pp_common.format(lbl='label')
  )
  pp_eval = 'decode|resize_small(256)|central_crop(224)' + pp_common

  # To continue using the near-defunct randaug op.
  config.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'archive.randaug']

  # Aggressive pre-fetching because our models here are small, so we not only
  # can afford it, but we also need it for the smallest models to not be
  # bottle-necked by the input pipeline. Play around with it for -L models tho.
  config.input.prefetch = 8
  config.prefetch_to_device = 4

  config.log_training_steps = 50
  config.ckpt_steps = 1000

  # Model section
  config.model_name = 'vit'
  config.model = dict(
      variant=arg.variant,
      rep_size=True,
      pool_type='tok',
  )

  # Optimizer section
  config.grad_clip_norm = 1.0
  config.optax_name = 'scale_by_adam'
  config.optax = dict(mu_dtype='bfloat16')
  # The modified AdaFactor we introduced in https://arxiv.org/abs/2106.04560
  # almost always behaves exactly like adam, but at a fraction of the memory
  # cost (specifically, adam_bf16 = +1.5M, adafactor = +0.5M), hence it is a
  # good idea to try it when you are memory-bound!
  # config.optax_name = 'big_vision.scale_by_adafactor'
  # A good flag to play with when hitting instabilities, is the following:
  # config.optax = dict(beta2_cap=0.95)

  config.lr = 0.001
  config.wd = 0.0001
  config.schedule = dict(warmup_steps=10_000, decay_type='cosine')

  config.mixup = MIXUP_DEF[aug_setting]

  # Eval section
  def get_eval(split, dataset='imagenet2012'):
    return dict(
        type='classification',
        data=dict(name=dataset, split=split),
        pp_fn=pp_eval.format(lbl='label'),
        loss_name=config.loss,
        log_steps=2500,  # Very fast O(seconds) so it's fine to run it often.
        cache='final' if arg.runlocal else 'none',
    )
  config.evals = {}
  config.evals.train = get_eval('train[:2%]')
  config.evals.minival = get_eval('train[99%:]')
  config.evals.val = get_eval('validation')
  config.evals.v2 = get_eval('test', dataset='imagenet_v2')
  config.evals.real = get_eval('validation', dataset='imagenet2012_real')
  config.evals.real.pp_fn = pp_eval.format(lbl='real_label')

  config.fewshot = get_fewshot_lsr(runlocal=arg.runlocal)
  config.fewshot.log_steps = 10_000

  # Make a few things much smaller for quick local debugging testruns.
  if arg.runlocal:
    config.input.shuffle_buffer_size = 10
    config.input.batch_size = 8
    config.input.cache_raw = False
    config.evals.train.data.split = 'train[:16]'
    config.evals.minival.data.split = 'train[:16]'
    config.evals.val.data.split = 'validation[:16]'
    config.evals.v2.data.split = 'test[:16]'
    config.evals.real.data.split = 'validation[:16]'

  return config