File size: 1,914 Bytes
93c5ad8
f0e1097
93c5ad8
 
 
 
f0e1097
 
93c5ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa
library_name: transformers
license: mit
metrics:
- f1
tags:
- generated_from_trainer
model-index:
- name: bert-indonesian-finetuned-news-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-indonesian-finetuned-news-v2

This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3352
- F1: 0.8548

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.2467        | 1.0   | 1000 | 0.3352          | 0.8548 |
| 0.3142        | 2.0   | 2000 | 0.3523          | 0.8576 |
| 0.2848        | 3.0   | 3000 | 0.3878          | 0.8584 |
| 0.2481        | 4.0   | 4000 | 0.4034          | 0.8676 |
| 0.2225        | 5.0   | 5000 | 0.4437          | 0.8705 |
| 0.2038        | 6.0   | 6000 | 0.4584          | 0.8706 |
| 0.1927        | 7.0   | 7000 | 0.4541          | 0.8710 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1