prabinpanta0 commited on
Commit
56bb402
verified
1 Parent(s): e7bf5a3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -5
README.md CHANGED
@@ -29,15 +29,17 @@ This is a fine-tuned BERT model for question answering tasks, trained on a custo
29
  ```python
30
  from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
31
 
32
- # Load a pretrained tokenizer and model from Hugging Face
33
- tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-distilled-squad")
34
- model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased-distilled-squad")
35
 
36
  # Create a pipeline for question answering
37
  qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
38
 
39
  # Define your context and questions
40
- context = "Berlin is the capital of Germany. Paris is the capital of France. Madrid is the capital of Spain."
 
 
41
  questions = [
42
  "What is the capital of Germany?",
43
  "Which city is the capital of France?",
@@ -45,7 +47,7 @@ questions = [
45
  ]
46
 
47
  # Get answers
48
- for question in questions:
49
  result = qa_pipeline(question=question, context=context)
50
  print(f"Question: {question}")
51
  print(f"Answer: {result['answer']}\n")
 
29
  ```python
30
  from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
31
 
32
+ # Load the tokenizer and model from Hugging Face
33
+ tokenizer = AutoTokenizer.from_pretrained("prabinpanta0/ZenGQ")
34
+ model = AutoModelForQuestionAnswering.from_pretrained("prabinpanta0/ZenGQ")
35
 
36
  # Create a pipeline for question answering
37
  qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
38
 
39
  # Define your context and questions
40
+ contexts = ["Berlin is the capital of Germany.",
41
+ "Paris is the capital of France.",
42
+ "Madrid is the capital of Spain."]
43
  questions = [
44
  "What is the capital of Germany?",
45
  "Which city is the capital of France?",
 
47
  ]
48
 
49
  # Get answers
50
+ for context, question in zip(contexts, questions):
51
  result = qa_pipeline(question=question, context=context)
52
  print(f"Question: {question}")
53
  print(f"Answer: {result['answer']}\n")