File size: 5,715 Bytes
b6addcd c6cd1d8 b6addcd bb3a878 c6cd1d8 c0243eb c6cd1d8 c0243eb 9c89bfe bb3a878 c0243eb b6addcd f598fc2 c0243eb f598fc2 c0243eb f598fc2 c0243eb f598fc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
license: mit
datasets:
- prabinpanta0/genki_hospital
pipeline_tag: text-classification
tags:
- patient-readmission
- predictive-model
- healthcare
- sklearn
- keras
- LightGBM
language:
- en
model_type: classification
task: patient-readmission-prediction
app_mode: standalone
frameworks:
- scikit-learn
- tensorflow
- LightGBM
metrics:
- accuracy
- precision
- recall
- f1
- roc_auc
---
# Patient Readmission Prediction
## Tranning
Github: [prabinpanta0/Patient-Readmission-Prediction](https://github.com/prabinpanta0/Patient-Readmission-Prediction)
## Dataset
* Original Source: [Kaggle/datasets/dubradave/hospital-readmissions](https://kaggle.com/datasets/dubradave/hospital-readmissions)
* Import Source: [HuggingFace/datasets/prabinpanta0/genki_hospital](https://huggingface.co/datasets/prabinpanta0/genki_hospital)
```Json
{
"model_id": "prabinpanta0/Patient-Readmission-Prediction",
"model_type": "sequence-classification",
"library": {
"random_forest": "scikit-learn",
"logistic_regression": "scikit-learn",
"k_nearest": "scikit-learn",
"svc": "scikit-learn",
"naive_bayes": "scikit-learn",
"neural_network": "keras",
"cross_validation_random_forest": "scikit-learn",
"cross_validation_logistic_regression": "scikit-learn",
"cross_validation_lightgbm": "LightGBM"
},
"model_architectures": {
"random_forest": "RandomForestClassifier",
"logistic_regression": "LogisticRegression",
"k_nearest": "KNeighborsClassifier",
"svc": "SVC",
"naive_bayes": "MultinomialNB",
"neural_network": "NeuralNetwork",
"cross_validation_random_forest": "RandomForestClassifier",
"cross_validation_logistic_regression": "LogisticRegression",
"cross_validation_lightgbm": "LGBMClassifier"
},
"model_paths": {
"random_forest": "model_RandomForestClassifier.pkl",
"logistic_regression": "model_Logistic_Regression.pkl",
"k_nearest": "model_K_nearest.pkl",
"svc": "model_svc.pkl",
"naive_bayes": "model_naive_bayes.pkl",
"neural_network": "neural_network.keras",
"cross_validation_random_forest": "model_rf.pkl",
"cross_validation_logistic_regression": "model_lr.pkl",
"cross_validation_lightgbm": "model_lgbm.pkl"
},
"model_classes": {
"random_forest": "RandomForestClassifier",
"logistic_regression": "LogisticRegression",
"k_nearest": "KNeighborsClassifier",
"svc": "SVC",
"naive_bayes": "MultinomialNB",
"neural_network": "NeuralNetwork",
"cross_validation_random_forest": "RandomForestClassifier",
"cross_validation_logistic_regression": "LogisticRegression"
},
"model_configs": {
"random_forest": {
"n_estimators": 100,
"max_depth": 5
},
"logistic_regression": {
"C": 1,
"max_iter": 1000
},
"k_nearest": {
"n_neighbors": 5
},
"svc": {
"C": 1,
"kernel": "linear"
},
"naive_bayes": {
"alpha": 1
},
"neural_network": {
"input_dim": 10,
"output_dim": 1,
"hidden_dim": 10
},
"cross_validation_random_forest": {
"n_estimators": 100,
"max_depth": 5
},
"cross_validation_logistic_regression": {
"C": 1,
"max_iter": 1000
},
"cross_validation_lightgbm": {
"random_state": 42
}
}
}
```
## metrics
|Model|Accuracy |Precision |Recall |AUC-ROC |
|-----|------------------|------------------|------------------|------------------|
|Random Forest|0.86544 |0.8734358240972471|0.8337883959044369|0.8635809449401703|
|Logistic Regression|0.74736 |0.7493540051679587|0.6928327645051194|0.7441573461079813|
|K-Nearest Neighbors|0.84112 |0.8543724844493231|0.7969283276450512|0.838524404786381 |
|Support Vector Classifier|0.84256 |0.8492462311557789|0.8075085324232082|0.8405012541634113|
|Naive Bayes|0.74176 |0.7692307692307693|0.6416382252559727|0.7358793535918418|
|Neural Network|0.87664 |0.889009009009009 |0.8419795221843004|0.8746042189234755|
|Random Forest (Cross-Validation)|0.86544 |0.8734358240972471|0.8337883959044369|0.8635809449401703|
|Logistic Regression (Cross-Validation)|0.74736 |0.7493540051679587|0.6928327645051194|0.7441573461079813|
|LightGBM (Cross-Validation)|0.8728 |0.8773418168964299|0.847098976109215 |0.8712904519100293|
|Random Forest|Logistic Regression|K-Nearest Neighbors|Support Vector Classifier|Naive Bayes |Neural Network |Random Forest (Cross-Validation)|Logistic Regression (Cross-Validation)|LightGBM (Cross-Validation)|
|-------------|-------------------|-------------------|-------------------------|------------------|------------------|--------------------------------|--------------------------------------|---------------------------|
|1.0 |0.7453866666666666 |0.8901866666666667 |0.8530133333333333 |0.7455466666666667|0.88288 |1.0 |0.7453866666666666 |0.9045866666666667 |
|1.0 |0.7449201741654572 |0.9005328596802842 |0.8556024378809189 |0.7743332882090158|0.8964114832535885|1.0 |0.7449201741654572 |0.910874897792314 |
|1.0 |0.6979827742520399 |0.8618540344514959 |0.8272892112420671 |0.6482320942883046|0.849274705349048 |1.0 |0.6979827742520399 |0.8837262012692656 |
|1.0 |0.7427552396345833 |0.8886139001594574 |0.8515853672571407 |0.7401446588709305|0.8810145438895148|1.0 |0.7427552396345833 |0.9034286859660855 |
|