Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
onekq 
posted an update about 6 hours ago
Post
159
From my own experience these are the pain points for reasoning model adoption.

(1) expensive and even worse, slow, due to excessive token output. You need to 10x your max output length to avoid clipping the thinking process.

(2) you have to filter thinking tokens to retrieve the final output. For mature workflows, this means broad or deep refactoring.

1p vendors (open-source and proprietary) ease these pain points by manipulating their own models. But the problems are exposed when the reasoning model is hosted by 3p MaaS providers.
In this post