File size: 4,265 Bytes
294d2b3
6eeded6
 
 
294d2b3
 
b776fb7
 
294d2b3
 
498a305
6eeded6
3d2a02f
6eeded6
 
3d2a02f
6eeded6
3d2a02f
 
6eeded6
 
3d2a02f
6eeded6
3d2a02f
 
6eeded6
3d2a02f
6eeded6
3d2a02f
 
6eeded6
 
3d2a02f
6eeded6
3d2a02f
6eeded6
 
3d2a02f
 
 
6eeded6
 
3d2a02f
6eeded6
3d2a02f
6eeded6
3d2a02f
6eeded6
 
3d2a02f
6eeded6
3d2a02f
 
6eeded6
 
3d2a02f
6eeded6
3d2a02f
 
6eeded6
 
3d2a02f
6eeded6
3d2a02f
 
498a305
 
c6e5b29
 
6fb9526
498a305
6fb9526
498a305
 
3d2a02f
6eeded6
 
 
 
 
 
 
 
 
 
 
 
 
 
294d2b3
 
 
 
 
b776fb7
294d2b3
 
 
41cac53
294d2b3
 
 
3d2a02f
294d2b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056b148
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- postbot/multi-emails-hq
metrics:
- accuracy
widget:
- text: 'Good Morning Professor Beans,

    Hope you are doing well. I just wanted to reach out and ask if differential calculus
    will be on the exam'
  example_title: email to prof
- text: 'Hey <NAME>,


    Thank you for signing up for my weekly newsletter. Before we get started, you''ll
    have to confirm your email address.'
  example_title: newsletter
- text: 'Hi <NAME>,


    I hope this email finds you well. I wanted to reach out and ask about office hours'
  example_title: office hours
- text: 'Greetings <NAME>,


    I hope you had a splendid evening at the Company sausage eating festival. I am
    reaching out because'
  example_title: festival
- text: 'Good Morning Harold,


    I was wondering when the next'
  example_title: event
- text: URGENT - I need the TPS reports
  example_title: URGENT
- text: 'Hi Archibald,


    I hope this email finds you extremely well.'
  example_title: emails that find you
- text: 'Hello there.


    I just wanted to reach out and check in to'
  example_title: checking in
- text: 'Hello <NAME>,


    I hope this email finds you well. I wanted to reach out and see if you''ve enjoyed
    your time with us'
  example_title: work well
- text: 'Hi <NAME>,


    I hope this email finds you well. I wanted to reach out and see if we could catch
    up'
  example_title: catch up
- text: I'm <NAME> and I just moved into the area and wanted to reach out and get
    some details on where I could get groceries and
  example_title: grocery
inference:
  parameters:
    min_length: 16
    max_length: 64
    no_repeat_ngram_size: 4
    do_sample: true
    top_k: 40
    top_p: 0.95
    repetition_penalty: 3.5
pipeline_tag: text-generation
base_model: EleutherAI/pythia-160m-deduped
model-index:
- name: pythia-160m-hq-emails-v4
  results:
  - task:
      type: text-generation
      name: Causal Language Modeling
    dataset:
      name: postbot/multi-emails-hq
      type: postbot/multi-emails-hq
    metrics:
    - type: accuracy
      value: 0.611281497151223
      name: Accuracy
---


# pythia-160m-hq-emails-v4

This model is a fine-tuned version of [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) on the postbot/multi-emails-hq dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2856
- Accuracy: 0.6113
- perplexity: 9.8313

## Model description

this is v4

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 4.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.412         | 0.99  | 76   | 2.5027          | 0.5458   |
| 1.9702        | 1.99  | 152  | 2.2757          | 0.5850   |
| 1.4628        | 2.99  | 228  | 2.2162          | 0.6082   |
| 1.1662        | 3.99  | 304  | 2.2856          | 0.6113   |


### Framework versions

- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_postbot__pythia-160m-hq-emails)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 25.12   |
| ARC (25-shot)         | 23.12          |
| HellaSwag (10-shot)   | 30.05    |
| MMLU (5-shot)         | 26.58         |
| TruthfulQA (0-shot)   | 45.51   |
| Winogrande (5-shot)   | 50.28   |
| GSM8K (5-shot)        | 0.0        |
| DROP (3-shot)         | 0.31         |