joaobone commited on
Commit
42ea19e
1 Parent(s): 805d893

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md CHANGED
@@ -4,4 +4,91 @@ license: mit
4
  inference:
5
  parameters:
6
  aggregation_strategy: "average"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  inference:
5
  parameters:
6
  aggregation_strategy: "average"
7
+
8
+ language:
9
+ - pt
10
+ pipeline_tag: fill-mask
11
+ tags:
12
+ - medialbertina-ptpt
13
+ - deberta
14
+ - portuguese
15
+ - european portuguese
16
+ - medical
17
+ - clinical
18
+ - healthcare
19
+ - NER
20
+ - Named Entity Recognition
21
+ - IE
22
+ - Information Extraction
23
+ widget:
24
+ - text: Durante a cirurgia ortopédica para corrigir a fratura no tornozelo, os sinais vitais do utente, incluindo a pressão arterial, com leitura de 120/87 mmHg, a frequência cardíaca, de 80 batimentos por minuto, e SpO2 a 98%, foram monitorizados. Após a cirurgia o utente apresentava dor intensa no local e inchaço no tornozelo, mas os resultados dos exames de radiografia revelaram uma recuperação satisfatória.
25
+ example_title: Example 1
26
+ - text: Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente.
27
+ example_title: Example 2
28
+ - text: Foi recomendada aspirina de 500mg a cada 4 horas, durante 3 dias.
29
+ example_title: Example 3
30
+ - text: Após as sessões de fisioterapia o paciente apresenta recuperação de mobilidade.
31
+ example_title: Example 4
32
+ - text: O paciente está em Quimioterapia com uma dosagem específica de Cisplatina para o tratamento do cancro do pulmão.
33
+ example_title: Example 5
34
+ - text: Monitorização da Freq. cardíaca com 90 bpm. P Arterial de 120-80 mmHg
35
+ example_title: Example 6
36
+ - text: A ressonância magnética da utente revelou uma ruptura no menisco lateral do joelho.
37
+ example_title: Example 7
38
+ - text: A paciente foi diagnosticada com esclerose múltipla e iniciou terapia com imunomoduladores.
39
  ---
40
+
41
+ # MediAlbertina
42
+ The first publicly available medical language models trained with real European Portuguese data.
43
+
44
+ MediAlbertina is a family of encoders from the Bert family, DeBERTaV2-based, resulting from the continuation of the pre-training of [PORTULAN's Albertina](https://huggingface.co/PORTULAN) models with Electronic Medical Records shared by Portugal's largest public hospital.
45
+
46
+ Like its antecessors, MediAlbertina models are distributed under the [MIT license](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_900m/blob/main/LICENSE).
47
+
48
+
49
+
50
+ # Model Description
51
+
52
+ MediAlbertina PT-PT 900M NER was created through domain adaptation of [MediAlbertina PT-PT 900M](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_900m) on real European Portuguese EMRs that have been hand-annotated for the following entities:
53
+ - Diagnostico
54
+ - Sintoma
55
+ - Medicamento
56
+ - Dosagem
57
+ - ProcedimentoMedico
58
+ - SinalVital
59
+ - Resultado
60
+ - Progresso
61
+ -
62
+ MediAlbertina PT-PT 900M NER achieved superior results to the same adaptation made on a non-medical Portuguese language model, demonstrating the effectiveness of this domain adaptation, and its potential for medical AI in Portugal.
63
+
64
+ | Model | NER single-model | NER multi-models | Assertion Status |
65
+ |-------------------------|:----------------:|:----------------:|:----------------:|
66
+ | | F1-score | F1-score | F1-score |
67
+ |albertina-900m-portuguese-ptpt-encoder | 0.813 | 0.811 | 0.687 |
68
+ | **medialbertina_pt-pt_900m** | **0.832** | **0.848** | **0.755** |
69
+
70
+ ## Data
71
+
72
+ MediAlbertina PT-PT 900M NER was fine-tuned on more than 10k hand-annotated entities from more than a thousand fully anonymized medical sentences from Portugal's largest public hospital. This data was acquired under the framework of the [FCT project DSAIPA/AI/0122/2020 AIMHealth-Mobile Applications Based on Artificial Intelligence](https://ciencia.iscte-iul.pt/projects/aplicacoes-moveis-baseadas-em-inteligencia-artificial-para-resposta-de-saude-publica/1567).
73
+
74
+
75
+ ## How to use
76
+
77
+ ```Python
78
+ from transformers import pipeline
79
+
80
+ ner_pipeline = pipeline('ner', model='portugueseNLP/medialbertina_pt-pt_900m_NER', aggregation_strategy='average')
81
+ sentence = 'Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente.'
82
+ entities = ner_pipeline(sentence)
83
+ for entity in entities:
84
+ print(f"{entity['entity_group']} - {sentence[entity['start']:entity['end']]}")
85
+ ```
86
+
87
+ ## Citation
88
+
89
+ MediAlbertina is developed by a joint team from [ISCTE-IUL](https://www.iscte-iul.pt/), Portugal, and [Select Data](https://selectdata.com/), CA USA. For a fully detailed description, check the respective publication:
90
+
91
+ ```latex
92
+ In publishing process. Reference will be added soon.
93
+ ```
94
+ Please use the above cannonical reference when using or citing this model.