Update custom_interface.py
Browse files- custom_interface.py +97 -0
custom_interface.py
CHANGED
@@ -1,6 +1,103 @@
|
|
1 |
import torch
|
2 |
from speechbrain.inference.interfaces import Pretrained
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
class CustomEncoderClassifier(Pretrained):
|
6 |
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
|
|
1 |
import torch
|
2 |
from speechbrain.inference.interfaces import Pretrained
|
3 |
|
4 |
+
class AttentionMLP(torch.nn.Module):
|
5 |
+
def __init__(self, input_dim, hidden_dim):
|
6 |
+
super(AttentionMLP, self).__init__()
|
7 |
+
self.layers = torch.nn.Sequential(
|
8 |
+
torch.nn.Linear(input_dim, hidden_dim),
|
9 |
+
torch.nn.ReLU(),
|
10 |
+
torch.nn.Linear(hidden_dim, 1, bias=False),
|
11 |
+
)
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
x = self.layers(x)
|
15 |
+
att_w = torch.nn.functional.softmax(x, dim=2)
|
16 |
+
return att_w
|
17 |
+
|
18 |
+
|
19 |
+
class Discrete_EmbeddingLayer(torch.nn.Module):
|
20 |
+
"""This class handles embedding layers for discrete tokens.
|
21 |
+
|
22 |
+
Arguments
|
23 |
+
---------
|
24 |
+
num_codebooks: int ,
|
25 |
+
number of codebooks of the tokenizer.
|
26 |
+
vocab_size : int,
|
27 |
+
size of the dictionary of embeddings
|
28 |
+
emb_dim: int ,
|
29 |
+
the size of each embedding vector
|
30 |
+
pad_index: int (default: 0),
|
31 |
+
If specified, the entries at padding_idx do not contribute to the gradient.
|
32 |
+
init: boolean (default: False):
|
33 |
+
If set to True, init the embedding with the tokenizer embedding otherwise init randomly.
|
34 |
+
freeze: boolean (default: False)
|
35 |
+
If True, the embedding is frozen. If False, the model will be trained
|
36 |
+
alongside with the rest of the pipeline.
|
37 |
+
|
38 |
+
Example
|
39 |
+
-------
|
40 |
+
>>> from speechbrain.lobes.models.huggingface_transformers.encodec import Encodec
|
41 |
+
>>> model_hub = "facebook/encodec_24khz"
|
42 |
+
>>> save_path = "savedir"
|
43 |
+
>>> model = Encodec(model_hub, save_path)
|
44 |
+
>>> audio = torch.randn(4, 1000)
|
45 |
+
>>> length = torch.tensor([1.0, .5, .75, 1.0])
|
46 |
+
>>> tokens, emb = model.encode(audio, length)
|
47 |
+
>>> print(tokens.shape)
|
48 |
+
torch.Size([4, 4, 2])
|
49 |
+
>>> emb= Discrete_EmbeddingLayer(2, 1024, 1024)
|
50 |
+
>>> in_emb = emb(tokens)
|
51 |
+
>>> print(in_emb.shape)
|
52 |
+
torch.Size([4, 4, 2, 1024])
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
num_codebooks,
|
58 |
+
vocab_size,
|
59 |
+
emb_dim,
|
60 |
+
pad_index=0,
|
61 |
+
init=False,
|
62 |
+
freeze=False,
|
63 |
+
):
|
64 |
+
super(Discrete_EmbeddingLayer, self).__init__()
|
65 |
+
self.vocab_size = vocab_size
|
66 |
+
self.num_codebooks = num_codebooks
|
67 |
+
self.freeze = freeze
|
68 |
+
self.embedding = torch.nn.Embedding(
|
69 |
+
num_codebooks * vocab_size, emb_dim
|
70 |
+
).requires_grad_(not self.freeze)
|
71 |
+
self.init = init
|
72 |
+
|
73 |
+
def init_embedding(self, weights):
|
74 |
+
with torch.no_grad():
|
75 |
+
self.embedding.weight = torch.nn.Parameter(weights)
|
76 |
+
|
77 |
+
def forward(self, in_tokens):
|
78 |
+
"""Computes the embedding for discrete tokens.
|
79 |
+
a sample.
|
80 |
+
|
81 |
+
Arguments
|
82 |
+
---------
|
83 |
+
in_tokens : torch.Tensor
|
84 |
+
A (Batch x Time x num_codebooks)
|
85 |
+
audio sample
|
86 |
+
Returns
|
87 |
+
-------
|
88 |
+
in_embs : torch.Tensor
|
89 |
+
"""
|
90 |
+
with torch.set_grad_enabled(not self.freeze):
|
91 |
+
# Add unique token IDs across diffrent codebooks by adding num_codebooks * vocab_size
|
92 |
+
in_tokens += torch.arange(
|
93 |
+
0,
|
94 |
+
self.num_codebooks * self.vocab_size,
|
95 |
+
self.vocab_size,
|
96 |
+
device=in_tokens.device,
|
97 |
+
)
|
98 |
+
# Forward Pass to embedding and
|
99 |
+
in_embs = self.embedding(in_tokens)
|
100 |
+
return in_embs
|
101 |
|
102 |
class CustomEncoderClassifier(Pretrained):
|
103 |
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|