File size: 5,207 Bytes
01cc924
 
1509327
 
01cc924
c260866
fe42b9d
 
c260866
fe42b9d
01cc924
c260866
01cc924
1509327
 
1f31236
1509327
 
 
c260866
 
1509327
 
1f31236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01cc924
 
 
 
 
05fbae6
01cc924
2485928
16b7745
 
5cf54f5
ce55dd4
bac8296
01cc924
16b7745
 
 
 
6769909
e68ed8f
2485928
e68ed8f
 
 
 
 
 
2485928
e68ed8f
 
 
 
 
 
 
 
 
 
 
 
 
99abccf
e68ed8f
 
 
 
 
 
20b3ded
e68ed8f
 
 
 
2485928
99abccf
e68ed8f
 
99abccf
e68ed8f
 
 
2485928
 
e68ed8f
0a6eab5
9b52b3c
 
 
 
 
 
b708f4a
9b52b3c
 
 
 
 
 
01cc924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
language:
- es
tags:
- common_voice_8_0
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wave2vec-xls-r-300m-es
  results:
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_8_0 es
      type: mozilla-foundation/common_voice_8_0
      args: es
    metrics:
    - name: Test WER
      type: wer
      value: 14.6
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: es
    metrics:
    - name: Test WER
      type: wer
      value: 28.63
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: es
    metrics:
    - name: Test WER
      type: wer
      value: 29.72
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Wav2Vec2-XLSR-300m-es  

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the spanish common_voice dataset thanks to the GPU credits generously given by the OVHcloud for the Speech Recognition challenge.
It achieves the following results on the evaluation set 

Without LM:
- Loss : 0.1900
- Wer : 0.146

With 5-gram:
- WER: 0.109
- CER: 0.036

### Usage with 5-gram.

The model can be used with n-gram (n=5) included in the processor as follows.

```python
import re
from transformers import AutoModelForCTC,Wav2Vec2ProcessorWithLM
import torch

# Loading model and processor
processor = Wav2Vec2ProcessorWithLM.from_pretrained("polodealvarado/xls-r-300m-es")
model = AutoModelForCTC.from_pretrained("polodealvarado/xls-r-300m-es")

# Cleaning characters
def remove_extra_chars(batch):
    chars_to_ignore_regex = '[^a-záéíóúñ ]'
    text = batch["translation"][target_lang]
    batch["text"] = re.sub(chars_to_ignore_regex, "", text.lower())
    return batch
    
# Preparing dataset
def prepare_dataset(batch):
    audio = batch["audio"]
    batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"],return_tensors="pt",padding=True).input_values[0]    
    with processor.as_target_processor():
        batch["labels"] = processor(batch["sentence"]).input_ids
    return batch
  

common_voice_test = load_dataset("mozilla-foundation/common_voice_8_0", "es", split="test",use_auth_token=True)
common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
common_voice_test = common_voice_test.cast_column("audio", Audio(sampling_rate=16_000))        
common_voice_test = common_voice_test.map(remove_extra_chars, remove_columns=dataset.column_names)
common_voice_test = common_voice_test.map(prepare_dataset)

# Testing first sample
inputs = torch_tensor(common_voice_test[0]["input_values"])

with torch.no_grad():
    logits = model(inputs).logits

pred_ids = torch.argmax(logits, dim=-1)
text = processor.batch_decode(logits.numpy()).text
print(text) # 'bien y qué regalo vas a abrir primero'

```

On the other, you can execute the eval.py file for evaluation

```bash 

# To use GPU: --device 0

$ python eval.py --model_id polodealvarado/xls-r-300m-es --dataset mozilla-foundation/common_voice_8_0 --config es --device 0 --split test

```




### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.6747        | 0.3   | 400  | 0.6535          | 0.5926 |
| 0.4439        | 0.6   | 800  | 0.3753          | 0.3193 |
| 0.3291        | 0.9   | 1200 | 0.3267          | 0.2721 |
| 0.2644        | 1.2   | 1600 | 0.2816          | 0.2311 |
| 0.24          | 1.5   | 2000 | 0.2647          | 0.2179 |
| 0.2265        | 1.79  | 2400 | 0.2406          | 0.2048 |
| 0.1994        | 2.09  | 2800 | 0.2357          | 0.1869 |
| 0.1613        | 2.39  | 3200 | 0.2242          | 0.1821 |
| 0.1546        | 2.69  | 3600 | 0.2123          | 0.1707 |
| 0.1441        | 2.99  | 4000 | 0.2067          | 0.1619 |
| 0.1138        | 3.29  | 4400 | 0.2044          | 0.1519 |
| 0.1072        | 3.59  | 4800 | 0.1917          | 0.1457 |
| 0.0992        | 3.89  | 5200 | 0.1900          | 0.1438 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0