polejowska commited on
Commit
8df375f
·
1 Parent(s): 930bf84

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -7
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.6172839506172839
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 1.7992
35
- - Accuracy: 0.6173
36
 
37
  ## Model description
38
 
@@ -60,15 +60,22 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 3
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 2.2191 | 0.97 | 23 | 2.0645 | 0.4198 |
70
- | 1.9791 | 1.97 | 46 | 1.8731 | 0.5926 |
71
- | 1.7559 | 2.97 | 69 | 1.7992 | 0.6173 |
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.9382716049382716
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.4685
35
+ - Accuracy: 0.9383
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.5583 | 0.97 | 23 | 1.6008 | 0.7160 |
70
+ | 1.2953 | 1.97 | 46 | 1.2957 | 0.7531 |
71
+ | 0.9488 | 2.97 | 69 | 1.0720 | 0.8148 |
72
+ | 0.7036 | 3.97 | 92 | 0.8965 | 0.8642 |
73
+ | 0.5446 | 4.97 | 115 | 0.7574 | 0.9383 |
74
+ | 0.4113 | 5.97 | 138 | 0.6522 | 0.9383 |
75
+ | 0.2259 | 6.97 | 161 | 0.5720 | 0.9383 |
76
+ | 0.1863 | 7.97 | 184 | 0.5076 | 0.9506 |
77
+ | 0.1443 | 8.97 | 207 | 0.4795 | 0.9383 |
78
+ | 0.1289 | 9.97 | 230 | 0.4685 | 0.9383 |
79
 
80
 
81
  ### Framework versions