pm390 commited on
Commit
5c719ce
·
1 Parent(s): 3199607

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 937.65 +/- 268.02
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53dffb0b573e7423d3bdd27ad1537349f6f162539809d684a0ccf58551f2f69c
3
+ size 129189
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dc0db5f80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dc0dbe050>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dc0dbe0e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dc0dbe170>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6dc0dbe200>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6dc0dbe290>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dc0dbe320>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6dc0dbe3b0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dc0dbe440>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dc0dbe4d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dc0dbe560>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6dc0e04ae0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1658689899.7035103,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAG7VLPz1Sh78LhtE+MbTBPS+mWL9Vwts+R0rAv3lEKb7mAAq/GJqpPq7qnD5nD1A+k9+mv6fKHTzmHNU+j4hRvXyPcr/pZvC+/4Wcv0EhCz8IEU+/E2BBvzaaQ7+VEUfAWXVyP/GW9j4Maf8+bvGZv3LtAz+/P/u/+rOMv+eCaL+/HoK/BMJ9PyEQNMD6zBE/wwsBwE/LoT97DaO+IMxtPp7bgj8OHoI/d5DPPv4g474KDe2/yKYnP7xBB8DHfBK9d8r5P4eLST41f8M+GZoLP1l1cj/xlvY+DGn/Pm7xmb/9MIY/ynvgvwnJBL8xGHI/SpgnwN4/h78a4qQ/YaGJP50ZgT+a+LK+XXbOP6WpIr/hs6G//JdaP+gEX8DRnDc/8R7qv/NmnL+/ZqW/n3uSPy60ib6GhbC/P84Rv1Rp3z8iJoe/8Zb2Pgxp/z5u8Zm/FW3nvtlfwb9Beqy9h5qJPi0jqr50M2U/pgkYv7rtPr74ABm/lyKdPc0VQD2GDrQ+GFYAv+RXlL6rGi4/BYKuPLNsij9AoDy/n3OQvkH6O7suvNi+T124vRLY2L7hkbm/WXVyP/GW9j4Maf8+bvGZv5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAEG0VDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBA3Ak+AAAAAN+e+b8AAAAA52x2PQAAAADlRt0/AAAAAMPwL7wAAAAAGPXwPwAAAADnxuy9AAAAADn8/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSyZ82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALJmgPQAAAADwsuq/AAAAAMbjsD0AAAAAKuHwPwAAAADtl6k9AAAAAJDI/D8AAAAAHMfwvQAAAADGSO+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3+jtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFKK3z0AAAAAqh7ovwAAAABn+Q4+AAAAAIRE5T8AAAAADXUFvgAAAADnOvE/AAAAADDl4j0AAAAAzcvpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrlKbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAI2YG9AAAAANWN9L8AAAAAVJJyvQAAAADZouI/AAAAAFAU/L0AAAAALE7jPwAAAADkCMi9AAAAAJzO5L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJG5pjurp7mMAWyUTegDjAF0lEdAqCFXj+717XV9lChoBkdAkl84AXEZSGgHTegDaAhHQKgkIB+Wnj11fZQoaAZHQJSJ1SFXaJ1oB03oA2gIR0CoJoEzGgjAdX2UKGgGR0CSLHjTrmheaAdN6ANoCEdAqCd6jUNKAnV9lChoBkdAkflmpda+vmgHTegDaAhHQKguIqSX+l11fZQoaAZHQIralsN2C/ZoB03oA2gIR0CoMO1cD8tPdX2UKGgGR0CUY878vVVhaAdN6ANoCEdAqDNKwIMSb3V9lChoBkdAkiyeyJKraWgHTegDaAhHQKg0RhCtzS11fZQoaAZHQJExyCe2/i5oB03oA2gIR0CoOt/qPfbcdX2UKGgGR0CU1r63RXwLaAdN6ANoCEdAqD2y/RE4N3V9lChoBkdAixNG/etSymgHTegDaAhHQKhAJfReC051fZQoaAZHQJKwtBmf5DZoB03oA2gIR0CoQRw8wHqvdX2UKGgGR0CQ5zqrR0EHaAdN6ANoCEdAqEfFYhdMTXV9lChoBkdAkuzHFYMfBGgHTegDaAhHQKhKny7wrlN1fZQoaAZHQI9wYPuogmtoB03oA2gIR0CoTQY0VJtjdX2UKGgGR0CS0HKqXF98aAdN6ANoCEdAqE3/OKO1fHV9lChoBkdAkUaKSTyJ9GgHTegDaAhHQKhUo8f3evZ1fZQoaAZHQJOwQQCjk+5oB03oA2gIR0CoV46ol2NedX2UKGgGR0CR7XXbdrO8aAdN6ANoCEdAqFoEtdzGP3V9lChoBkdAk5FLT2FnI2gHTegDaAhHQKhbAO/+Kj11fZQoaAZHQI+hcVpKzzFoB03oA2gIR0CoYc36yjYadX2UKGgGR0CR7BMAmzBzaAdN6ANoCEdAqGSWlGgBcXV9lChoBkdAlI4FawD/2mgHTegDaAhHQKhm/F7Uoa11fZQoaAZHQJKCbd69kBloB03oA2gIR0CoZ/V9nbqRdX2UKGgGR0CMK08B+4LDaAdN6ANoCEdAqG6N0V8CxXV9lChoBkdAkJ1XSOR1YGgHTegDaAhHQKhxW8WbgCR1fZQoaAZHQJRZ5dY4hlloB03oA2gIR0Coc8OL74zrdX2UKGgGR0CT/TjawljWaAdN6ANoCEdAqHS6ngpBonV9lChoBkdAgj4Ia99MK2gHTegDaAhHQKh7TaNdZ7p1fZQoaAZHQJOHwvsZ5zJoB03oA2gIR0CofiXko4MndX2UKGgGR0CXLRj9XLeRaAdN6ANoCEdAqICCOktVaXV9lChoBkdAkcIjaCcwxmgHTegDaAhHQKiBesjFAFB1fZQoaAZHQIlIiZBsyi5oB03oA2gIR0CoiCK0lZ5idX2UKGgGR0B8AIOwxFiKaAdN6ANoCEdAqIrox+KCQXV9lChoBkdAiXIZxrBTGmgHTegDaAhHQKiNTj5Kvmp1fZQoaAZHQIpvZML4N7VoB03oA2gIR0CojkIyKvV3dX2UKGgGR0CVbamce8wpaAdN6ANoCEdAqJTbMA3kxXV9lChoBkdAh0Cvegte2WgHTegDaAhHQKiXtAO8TSN1fZQoaAZHQIT0/8hs67xoB03oA2gIR0ComieHBUJfdX2UKGgGR0CK4U8xsVL0aAdN6ANoCEdAqJsbbnHNo3V9lChoBkdAkJ61o11numgHTegDaAhHQKihsJwbVBl1fZQoaAZHQJGA6e2/i5xoB03oA2gIR0CopHcMNMGpdX2UKGgGR0B+KP5BTn7paAdN6ANoCEdAqKbby8SPEXV9lChoBkdAkKFQkka/AWgHTegDaAhHQKin0V5a/yp1fZQoaAZHQJiGmcNH6M1oB03oA2gIR0CoroWH+IdmdX2UKGgGR0CK78d+5OJtaAdN6ANoCEdAqLFPmRvFWHV9lChoBkdAlYC1bJOnEWgHTegDaAhHQKizpvKlpGp1fZQoaAZHQJiDu9lEqlRoB03oA2gIR0CotJtKAavSdX2UKGgGR0CU8IUWVNYbaAdN6ANoCEdAqLtB8neBQXV9lChoBkdAhOc6Ln9vTGgHTegDaAhHQKi+Agf2bod1fZQoaAZHQJYHacvugHxoB03oA2gIR0CowGX0f5k9dX2UKGgGR0CVHvX0Gu9waAdN6ANoCEdAqMFc3S8aoHV9lChoBkdAifu5M+NcW2gHTegDaAhHQKjH9LaEi+t1fZQoaAZHQJLk7vfCQ91oB03oA2gIR0CoyrsSkCV9dX2UKGgGR0CZ2C2MKkVOaAdN6ANoCEdAqM0kBjnV5XV9lChoBkdAlloiT2WY4WgHTegDaAhHQKjOFJqZc9p1fZQoaAZHQJo2xGgBcRloB03oA2gIR0Co1KYy44IbdX2UKGgGR0CYh2mQKa5PaAdN6ANoCEdAqNeMtK7I1nV9lChoBkdAlimACnxaxGgHTegDaAhHQKjZ8QDFId51fZQoaAZHQJhFgfcN6PdoB03oA2gIR0Co2uoexOcldX2UKGgGR0CSCMOtnwocaAdN6ANoCEdAqOGS66J66nV9lChoBkdAlBelEJBw/GgHTegDaAhHQKjkXWiDdxh1fZQoaAZHQJNty2x6fJ5oB03oA2gIR0Co5sCg9NeudX2UKGgGR0CVxJUornTzaAdN6ANoCEdAqOe8xwhnrnV9lChoBkdAkxy+MAFPi2gHTegDaAhHQKjucjY7JXB1fZQoaAZHQJH/PqLS/j9oB03oA2gIR0Co8WG0E5hjdX2UKGgGR0CXz4e/5+H8aAdN6ANoCEdAqPPdfTkQw3V9lChoBkdAlaIYhpxm02gHTegDaAhHQKj04gVXV9Z1fZQoaAZHQJkNPN2TxG5oB03oA2gIR0Co+5n0Cih4dX2UKGgGR0CV8Nrd30PIaAdN6ANoCEdAqP5vHBDXv3V9lChoBkdAjr+jnmq5smgHTegDaAhHQKkA1VENOM51fZQoaAZHQJo95Frl/6RoB03oA2gIR0CpAc+U6gdwdX2UKGgGR0CBaH003wTeaAdN6ANoCEdAqQhXRZ2ZA3V9lChoBkdAle2QCCBf8mgHTegDaAhHQKkLJ1anrIJ1fZQoaAZHQJMvX0PH1e1oB03oA2gIR0CpDYXjuKGddX2UKGgGR0CUDlagElmfaAdN6ANoCEdAqQ52iFj/dnV9lChoBkdAkIIVN5+pfmgHTegDaAhHQKkVF2alUId1fZQoaAZHQJUIYSkCV8loB03oA2gIR0CpF91eBxxUdX2UKGgGR0CTdFR8+iaiaAdN6ANoCEdAqRpB+WnjyXV9lChoBkdAkOqAJgLJCGgHTegDaAhHQKkbN16E8JV1fZQoaAZHQIzFQT9KmKtoB03oA2gIR0CpIdNC7btadX2UKGgGR0CTs59SMtK7aAdN6ANoCEdAqSScKLKmsXV9lChoBkdAmAH6cmShamgHTegDaAhHQKkm+HLRrrR1fZQoaAZHQJZ5d/vv0AdoB03oA2gIR0CpJ+/mLcbjdX2UKGgGR0CVF/QkHD77aAdN6ANoCEdAqS6f6oESunV9lChoBkdAmVOwSOBDomgHTegDaAhHQKkxb6WPcSJ1fZQoaAZHQJk7EiLVFx5oB03oA2gIR0CpM+pQDV6NdX2UKGgGR0CYZ5h1Tzd2aAdN6ANoCEdAqTTg7vG6w3V9lChoBkdAku6Ss4ku6GgHTegDaAhHQKk7fiR4hU11fZQoaAZHQH/AAcPvrnloB03oA2gIR0CpPlL3K0UodX2UKGgGR0CVccattALRaAdN6ANoCEdAqUC2h0yP/HV9lChoBkdAgnjyFXaJymgHTegDaAhHQKlBq7U5MlF1fZQoaAZHQJib01n/T9doB03oA2gIR0CpSCUiQkondX2UKGgGR0CL+p5/smfHaAdN6ANoCEdAqUrziGWUr3V9lChoBkdAlFhfldTo+2gHTegDaAhHQKlNTlrdnCh1fZQoaAZHQJCGitzS1E5oB03oA2gIR0CpTkrsa86FdX2UKGgGR0CLbC7g88s+aAdN6ANoCEdAqVT2gpSaVnV9lChoBkdAjVhrG7z06GgHTegDaAhHQKlX0JtSAH51fZQoaAZHQId8Mjqv/zdoB03oA2gIR0CpWjs+eOGTdX2UKGgGR0CLFwXqJMxoaAdN6ANoCEdAqVs1IRRMvnVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:039974505739ceec66109bc7d9bdf83654bbda94c01fe832656223c6d8fee978
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7267b086eeaa308894077bad5592f9a041779ae5d7fedc89858bf9d01209b670
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dc0db5f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dc0dbe050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dc0dbe0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dc0dbe170>", "_build": "<function ActorCriticPolicy._build at 0x7f6dc0dbe200>", "forward": "<function ActorCriticPolicy.forward at 0x7f6dc0dbe290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dc0dbe320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6dc0dbe3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dc0dbe440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dc0dbe4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dc0dbe560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6dc0e04ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658689899.7035103, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAG7VLPz1Sh78LhtE+MbTBPS+mWL9Vwts+R0rAv3lEKb7mAAq/GJqpPq7qnD5nD1A+k9+mv6fKHTzmHNU+j4hRvXyPcr/pZvC+/4Wcv0EhCz8IEU+/E2BBvzaaQ7+VEUfAWXVyP/GW9j4Maf8+bvGZv3LtAz+/P/u/+rOMv+eCaL+/HoK/BMJ9PyEQNMD6zBE/wwsBwE/LoT97DaO+IMxtPp7bgj8OHoI/d5DPPv4g474KDe2/yKYnP7xBB8DHfBK9d8r5P4eLST41f8M+GZoLP1l1cj/xlvY+DGn/Pm7xmb/9MIY/ynvgvwnJBL8xGHI/SpgnwN4/h78a4qQ/YaGJP50ZgT+a+LK+XXbOP6WpIr/hs6G//JdaP+gEX8DRnDc/8R7qv/NmnL+/ZqW/n3uSPy60ib6GhbC/P84Rv1Rp3z8iJoe/8Zb2Pgxp/z5u8Zm/FW3nvtlfwb9Beqy9h5qJPi0jqr50M2U/pgkYv7rtPr74ABm/lyKdPc0VQD2GDrQ+GFYAv+RXlL6rGi4/BYKuPLNsij9AoDy/n3OQvkH6O7suvNi+T124vRLY2L7hkbm/WXVyP/GW9j4Maf8+bvGZv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAEG0VDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBA3Ak+AAAAAN+e+b8AAAAA52x2PQAAAADlRt0/AAAAAMPwL7wAAAAAGPXwPwAAAADnxuy9AAAAADn8/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSyZ82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALJmgPQAAAADwsuq/AAAAAMbjsD0AAAAAKuHwPwAAAADtl6k9AAAAAJDI/D8AAAAAHMfwvQAAAADGSO+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3+jtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFKK3z0AAAAAqh7ovwAAAABn+Q4+AAAAAIRE5T8AAAAADXUFvgAAAADnOvE/AAAAADDl4j0AAAAAzcvpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrlKbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAI2YG9AAAAANWN9L8AAAAAVJJyvQAAAADZouI/AAAAAFAU/L0AAAAALE7jPwAAAADkCMi9AAAAAJzO5L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJG5pjurp7mMAWyUTegDjAF0lEdAqCFXj+717XV9lChoBkdAkl84AXEZSGgHTegDaAhHQKgkIB+Wnj11fZQoaAZHQJSJ1SFXaJ1oB03oA2gIR0CoJoEzGgjAdX2UKGgGR0CSLHjTrmheaAdN6ANoCEdAqCd6jUNKAnV9lChoBkdAkflmpda+vmgHTegDaAhHQKguIqSX+l11fZQoaAZHQIralsN2C/ZoB03oA2gIR0CoMO1cD8tPdX2UKGgGR0CUY878vVVhaAdN6ANoCEdAqDNKwIMSb3V9lChoBkdAkiyeyJKraWgHTegDaAhHQKg0RhCtzS11fZQoaAZHQJExyCe2/i5oB03oA2gIR0CoOt/qPfbcdX2UKGgGR0CU1r63RXwLaAdN6ANoCEdAqD2y/RE4N3V9lChoBkdAixNG/etSymgHTegDaAhHQKhAJfReC051fZQoaAZHQJKwtBmf5DZoB03oA2gIR0CoQRw8wHqvdX2UKGgGR0CQ5zqrR0EHaAdN6ANoCEdAqEfFYhdMTXV9lChoBkdAkuzHFYMfBGgHTegDaAhHQKhKny7wrlN1fZQoaAZHQI9wYPuogmtoB03oA2gIR0CoTQY0VJtjdX2UKGgGR0CS0HKqXF98aAdN6ANoCEdAqE3/OKO1fHV9lChoBkdAkUaKSTyJ9GgHTegDaAhHQKhUo8f3evZ1fZQoaAZHQJOwQQCjk+5oB03oA2gIR0CoV46ol2NedX2UKGgGR0CR7XXbdrO8aAdN6ANoCEdAqFoEtdzGP3V9lChoBkdAk5FLT2FnI2gHTegDaAhHQKhbAO/+Kj11fZQoaAZHQI+hcVpKzzFoB03oA2gIR0CoYc36yjYadX2UKGgGR0CR7BMAmzBzaAdN6ANoCEdAqGSWlGgBcXV9lChoBkdAlI4FawD/2mgHTegDaAhHQKhm/F7Uoa11fZQoaAZHQJKCbd69kBloB03oA2gIR0CoZ/V9nbqRdX2UKGgGR0CMK08B+4LDaAdN6ANoCEdAqG6N0V8CxXV9lChoBkdAkJ1XSOR1YGgHTegDaAhHQKhxW8WbgCR1fZQoaAZHQJRZ5dY4hlloB03oA2gIR0Coc8OL74zrdX2UKGgGR0CT/TjawljWaAdN6ANoCEdAqHS6ngpBonV9lChoBkdAgj4Ia99MK2gHTegDaAhHQKh7TaNdZ7p1fZQoaAZHQJOHwvsZ5zJoB03oA2gIR0CofiXko4MndX2UKGgGR0CXLRj9XLeRaAdN6ANoCEdAqICCOktVaXV9lChoBkdAkcIjaCcwxmgHTegDaAhHQKiBesjFAFB1fZQoaAZHQIlIiZBsyi5oB03oA2gIR0CoiCK0lZ5idX2UKGgGR0B8AIOwxFiKaAdN6ANoCEdAqIrox+KCQXV9lChoBkdAiXIZxrBTGmgHTegDaAhHQKiNTj5Kvmp1fZQoaAZHQIpvZML4N7VoB03oA2gIR0CojkIyKvV3dX2UKGgGR0CVbamce8wpaAdN6ANoCEdAqJTbMA3kxXV9lChoBkdAh0Cvegte2WgHTegDaAhHQKiXtAO8TSN1fZQoaAZHQIT0/8hs67xoB03oA2gIR0ComieHBUJfdX2UKGgGR0CK4U8xsVL0aAdN6ANoCEdAqJsbbnHNo3V9lChoBkdAkJ61o11numgHTegDaAhHQKihsJwbVBl1fZQoaAZHQJGA6e2/i5xoB03oA2gIR0CopHcMNMGpdX2UKGgGR0B+KP5BTn7paAdN6ANoCEdAqKbby8SPEXV9lChoBkdAkKFQkka/AWgHTegDaAhHQKin0V5a/yp1fZQoaAZHQJiGmcNH6M1oB03oA2gIR0CoroWH+IdmdX2UKGgGR0CK78d+5OJtaAdN6ANoCEdAqLFPmRvFWHV9lChoBkdAlYC1bJOnEWgHTegDaAhHQKizpvKlpGp1fZQoaAZHQJiDu9lEqlRoB03oA2gIR0CotJtKAavSdX2UKGgGR0CU8IUWVNYbaAdN6ANoCEdAqLtB8neBQXV9lChoBkdAhOc6Ln9vTGgHTegDaAhHQKi+Agf2bod1fZQoaAZHQJYHacvugHxoB03oA2gIR0CowGX0f5k9dX2UKGgGR0CVHvX0Gu9waAdN6ANoCEdAqMFc3S8aoHV9lChoBkdAifu5M+NcW2gHTegDaAhHQKjH9LaEi+t1fZQoaAZHQJLk7vfCQ91oB03oA2gIR0CoyrsSkCV9dX2UKGgGR0CZ2C2MKkVOaAdN6ANoCEdAqM0kBjnV5XV9lChoBkdAlloiT2WY4WgHTegDaAhHQKjOFJqZc9p1fZQoaAZHQJo2xGgBcRloB03oA2gIR0Co1KYy44IbdX2UKGgGR0CYh2mQKa5PaAdN6ANoCEdAqNeMtK7I1nV9lChoBkdAlimACnxaxGgHTegDaAhHQKjZ8QDFId51fZQoaAZHQJhFgfcN6PdoB03oA2gIR0Co2uoexOcldX2UKGgGR0CSCMOtnwocaAdN6ANoCEdAqOGS66J66nV9lChoBkdAlBelEJBw/GgHTegDaAhHQKjkXWiDdxh1fZQoaAZHQJNty2x6fJ5oB03oA2gIR0Co5sCg9NeudX2UKGgGR0CVxJUornTzaAdN6ANoCEdAqOe8xwhnrnV9lChoBkdAkxy+MAFPi2gHTegDaAhHQKjucjY7JXB1fZQoaAZHQJH/PqLS/j9oB03oA2gIR0Co8WG0E5hjdX2UKGgGR0CXz4e/5+H8aAdN6ANoCEdAqPPdfTkQw3V9lChoBkdAlaIYhpxm02gHTegDaAhHQKj04gVXV9Z1fZQoaAZHQJkNPN2TxG5oB03oA2gIR0Co+5n0Cih4dX2UKGgGR0CV8Nrd30PIaAdN6ANoCEdAqP5vHBDXv3V9lChoBkdAjr+jnmq5smgHTegDaAhHQKkA1VENOM51fZQoaAZHQJo95Frl/6RoB03oA2gIR0CpAc+U6gdwdX2UKGgGR0CBaH003wTeaAdN6ANoCEdAqQhXRZ2ZA3V9lChoBkdAle2QCCBf8mgHTegDaAhHQKkLJ1anrIJ1fZQoaAZHQJMvX0PH1e1oB03oA2gIR0CpDYXjuKGddX2UKGgGR0CUDlagElmfaAdN6ANoCEdAqQ52iFj/dnV9lChoBkdAkIIVN5+pfmgHTegDaAhHQKkVF2alUId1fZQoaAZHQJUIYSkCV8loB03oA2gIR0CpF91eBxxUdX2UKGgGR0CTdFR8+iaiaAdN6ANoCEdAqRpB+WnjyXV9lChoBkdAkOqAJgLJCGgHTegDaAhHQKkbN16E8JV1fZQoaAZHQIzFQT9KmKtoB03oA2gIR0CpIdNC7btadX2UKGgGR0CTs59SMtK7aAdN6ANoCEdAqSScKLKmsXV9lChoBkdAmAH6cmShamgHTegDaAhHQKkm+HLRrrR1fZQoaAZHQJZ5d/vv0AdoB03oA2gIR0CpJ+/mLcbjdX2UKGgGR0CVF/QkHD77aAdN6ANoCEdAqS6f6oESunV9lChoBkdAmVOwSOBDomgHTegDaAhHQKkxb6WPcSJ1fZQoaAZHQJk7EiLVFx5oB03oA2gIR0CpM+pQDV6NdX2UKGgGR0CYZ5h1Tzd2aAdN6ANoCEdAqTTg7vG6w3V9lChoBkdAku6Ss4ku6GgHTegDaAhHQKk7fiR4hU11fZQoaAZHQH/AAcPvrnloB03oA2gIR0CpPlL3K0UodX2UKGgGR0CVccattALRaAdN6ANoCEdAqUC2h0yP/HV9lChoBkdAgnjyFXaJymgHTegDaAhHQKlBq7U5MlF1fZQoaAZHQJib01n/T9doB03oA2gIR0CpSCUiQkondX2UKGgGR0CL+p5/smfHaAdN6ANoCEdAqUrziGWUr3V9lChoBkdAlFhfldTo+2gHTegDaAhHQKlNTlrdnCh1fZQoaAZHQJCGitzS1E5oB03oA2gIR0CpTkrsa86FdX2UKGgGR0CLbC7g88s+aAdN6ANoCEdAqVT2gpSaVnV9lChoBkdAjVhrG7z06GgHTegDaAhHQKlX0JtSAH51fZQoaAZHQId8Mjqv/zdoB03oA2gIR0CpWjs+eOGTdX2UKGgGR0CLFwXqJMxoaAdN6ANoCEdAqVs1IRRMvnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (896 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 937.6458392396802, "std_reward": 268.02351618017457, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-24T20:06:33.663241"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4fb3c4a1df704c41766f507b66776111507c788b66f3674bcf096bf2d957629
3
+ size 2763