File size: 1,695 Bytes
792d52f 1f8645c 792d52f 1eb8638 792d52f 1f8645c 792d52f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- scitldr
base_model: microsoft/phi-1_5
model-index:
- name: Phi-1.5-Summarization-LoRA
results: []
pipeline_tag: summarization
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi-1.5 Summarization (LoRA)
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the scitldr dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6242
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6014 | 0.25 | 500 | 2.6496 |
| 2.5756 | 0.5 | 1000 | 2.6445 |
| 2.5945 | 0.75 | 1500 | 2.6291 |
| 2.5251 | 1.0 | 2000 | 2.6133 |
| 2.3196 | 1.26 | 2500 | 2.6370 |
| 2.2953 | 1.51 | 3000 | 2.6325 |
| 2.452 | 1.76 | 3500 | 2.6242 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |