File size: 1,768 Bytes
f937bbe ee77985 28f17d6 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 f937bbe ee77985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
base_model: bigscience/bloom-1b1
datasets:
- scitldr
library_name: peft
license: bigscience-bloom-rail-1.0
tags:
- generated_from_trainer
model-index:
- name: Bloom-1b1-Summarization-QLoRa
results: []
pipeline_tag: summarization
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bloom-1b1-Summarization-QLoRa
This model is a fine-tuned version of [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) on the scitldr dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7202
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.6959 | 0.2510 | 500 | 2.7513 |
| 2.6632 | 0.5020 | 1000 | 2.7296 |
| 2.6724 | 0.7530 | 1500 | 2.7230 |
| 2.6625 | 1.0040 | 2000 | 2.7177 |
| 2.5181 | 1.2550 | 2500 | 2.7247 |
| 2.4633 | 1.5060 | 3000 | 2.7230 |
| 2.4341 | 1.7570 | 3500 | 2.7202 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |