File size: 1,768 Bytes
f937bbe
ee77985
 
 
 
 
 
 
 
 
 
28f17d6
f937bbe
 
ee77985
 
f937bbe
ee77985
f937bbe
ee77985
 
 
f937bbe
ee77985
f937bbe
ee77985
f937bbe
ee77985
f937bbe
ee77985
f937bbe
ee77985
f937bbe
ee77985
f937bbe
ee77985
f937bbe
ee77985
f937bbe
ee77985
 
 
 
 
 
 
 
 
f937bbe
ee77985
f937bbe
ee77985
 
 
 
 
 
 
 
 
f937bbe
 
ee77985
f937bbe
ee77985
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: bigscience/bloom-1b1
datasets:
- scitldr
library_name: peft
license: bigscience-bloom-rail-1.0
tags:
- generated_from_trainer
model-index:
- name: Bloom-1b1-Summarization-QLoRa
  results: []
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Bloom-1b1-Summarization-QLoRa

This model is a fine-tuned version of [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) on the scitldr dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7202

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.6959        | 0.2510 | 500  | 2.7513          |
| 2.6632        | 0.5020 | 1000 | 2.7296          |
| 2.6724        | 0.7530 | 1500 | 2.7230          |
| 2.6625        | 1.0040 | 2000 | 2.7177          |
| 2.5181        | 1.2550 | 2500 | 2.7247          |
| 2.4633        | 1.5060 | 3000 | 2.7230          |
| 2.4341        | 1.7570 | 3500 | 2.7202          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1