pk3388 commited on
Commit
f58c2f0
·
verified ·
1 Parent(s): 1a789e0

Model save

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: vit-base-patch16-224-ethos-25
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9170896785109983
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # vit-base-patch16-224-ethos-25
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.2803
36
+ - Accuracy: 0.9171
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0002
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.606 | 0.99 | 43 | 1.3384 | 0.6387 |
71
+ | 0.6334 | 1.99 | 86 | 0.5900 | 0.8519 |
72
+ | 0.3928 | 2.98 | 129 | 0.4637 | 0.8739 |
73
+ | 0.2361 | 4.0 | 173 | 0.3965 | 0.8909 |
74
+ | 0.1816 | 4.99 | 216 | 0.4107 | 0.8782 |
75
+ | 0.1253 | 5.99 | 259 | 0.3433 | 0.8976 |
76
+ | 0.1255 | 6.98 | 302 | 0.3334 | 0.9069 |
77
+ | 0.1009 | 8.0 | 346 | 0.3042 | 0.9154 |
78
+ | 0.0812 | 8.99 | 389 | 0.2809 | 0.9146 |
79
+ | 0.0698 | 9.94 | 430 | 0.2803 | 0.9171 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.39.3
85
+ - Pytorch 2.1.2
86
+ - Datasets 2.18.0
87
+ - Tokenizers 0.15.2