Update README.md
Browse files
README.md
CHANGED
@@ -3,4 +3,55 @@ license: mit
|
|
3 |
base_model:
|
4 |
- meta-llama/Llama-3.1-8B-Instruct
|
5 |
pipeline_tag: text-generation
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
base_model:
|
4 |
- meta-llama/Llama-3.1-8B-Instruct
|
5 |
pipeline_tag: text-generation
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
tags:
|
9 |
+
- medical
|
10 |
+
---
|
11 |
+
|
12 |
+
|
13 |
+
<div align="center">
|
14 |
+
<h1>
|
15 |
+
MedSSS-8B-Policy
|
16 |
+
</h1>
|
17 |
+
</div>
|
18 |
+
|
19 |
+
<div align="center">
|
20 |
+
<a href="https://github.com/pixas/MedSSS" target="_blank">GitHub</a> | <a href="" target="_blank">Paper</a>
|
21 |
+
</div>
|
22 |
+
|
23 |
+
# <span>Introduction</span>
|
24 |
+
**MedSSS-Policy** is a the policy model designed for slow-thinking medical reasoning. It will conduct explicit step-wise reasoning and finalize the answer at the end of the response.
|
25 |
+
|
26 |
+
For more information, visit our GitHub repository:
|
27 |
+
[https://github.com/pixas/MedSSS](https://github.com/pixas/MedSSS).
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
# <span>Usage</span>
|
33 |
+
We build the policy model as a LoRA adapter, which saves the memory to use it.
|
34 |
+
As this LoRA adapter is built on `Meta-Llama3.1-8B-Instruct`, you need to first prepare the base model in your platform.
|
35 |
+
You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference:
|
36 |
+
```python
|
37 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
38 |
+
from peft import PeftModel
|
39 |
+
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct",torch_dtype="auto",device_map="auto")
|
40 |
+
model = PeftModel.from_pretrained(base_model, "pixas/MedSSS_Policy", torc_dtype="auto", device_map="auto")
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("pixas/MedSSS_Policy")
|
42 |
+
input_text = "How to stop a cough?"
|
43 |
+
messages = [{"role": "user", "content": input_text}]
|
44 |
+
inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
|
45 |
+
), return_tensors="pt").to(model.device)
|
46 |
+
outputs = model.generate(**inputs, max_new_tokens=2048)
|
47 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
48 |
+
```
|
49 |
+
|
50 |
+
MedSSS-Policy adopts a step-wise reasoning approach, with outputs formatted as:
|
51 |
+
|
52 |
+
```
|
53 |
+
Step 0: Let's break down this problem step by step.
|
54 |
+
Step 1: ...
|
55 |
+
[several steps]
|
56 |
+
Step N: [last reasoning step]\n\nThe answer is {answer}
|
57 |
+
```
|