pivovalera2012
commited on
Commit
•
8dc076f
1
Parent(s):
a5468d3
Upload PPO LunarLander-v2 trained agent
Browse files- DDPG-PandaPickAndPlace-v3.zip +3 -0
- DDPG-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- DDPG-PandaPickAndPlace-v3/actor.optimizer.pth +3 -0
- DDPG-PandaPickAndPlace-v3/critic.optimizer.pth +3 -0
- DDPG-PandaPickAndPlace-v3/data +116 -0
- DDPG-PandaPickAndPlace-v3/policy.pth +3 -0
- DDPG-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- DDPG-PandaPickAndPlace-v3/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
DDPG-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12dcf66c9bcefbd0089a9ddc2d598a80f9e68afa74e1ae3ee4696132b15d26ec
|
3 |
+
size 4269418
|
DDPG-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.3.0a4
|
DDPG-PandaPickAndPlace-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbe6a8812d46f84661f3c8dc39204c38fe0432749954ad18c3ec8c281a81be13
|
3 |
+
size 1060512
|
DDPG-PandaPickAndPlace-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b67c34983fb38160f33eddb5ce1b647b25adb4fe6fe3bf2d9317b73d0103674
|
3 |
+
size 1066016
|
DDPG-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x7c432e1d5e10>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c432e1cf600>"
|
10 |
+
},
|
11 |
+
"verbose": 0,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"n_critics": 1
|
14 |
+
},
|
15 |
+
"num_timesteps": 30000,
|
16 |
+
"_total_timesteps": 30000,
|
17 |
+
"_num_timesteps_at_start": 0,
|
18 |
+
"seed": null,
|
19 |
+
"action_noise": null,
|
20 |
+
"start_time": 1710699512561460313,
|
21 |
+
"learning_rate": 0.001,
|
22 |
+
"tensorboard_log": null,
|
23 |
+
"_last_obs": {
|
24 |
+
":type:": "<class 'collections.OrderedDict'>",
|
25 |
+
":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAhMNNvBhbAT3Qv6M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAx2FvPb0A/L0K16M8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAAD0jKq8UUCAvkoeGT9ejoG8vLW3vCgD1jv8jI40hMNNvBhbAT3Qv6M8XNiMOJs6GzcoYG+5/qypt2/XF7bgQk+sLZhLL/okXC5W1Pu4lGgOSwFLE4aUaBJ0lFKUdS4=",
|
26 |
+
"achieved_goal": "[[-0.01255882 0.03158101 0.01998892]]",
|
27 |
+
"desired_goal": "[[ 0.05844286 -0.12304828 0.02 ]]",
|
28 |
+
"observation": "[[-2.0819165e-02 -2.5049070e-01 5.9811842e-01 -1.5814956e-02\n -2.2425525e-02 6.5311380e-03 2.6552141e-07 -1.2558822e-02\n 3.1581014e-02 1.9988924e-02 6.7160203e-05 9.2523651e-06\n -2.2828637e-04 -2.0226926e-05 -2.2626152e-06 -2.9453592e-12\n 1.8516806e-10 5.0055050e-11 -1.2008163e-04]]"
|
29 |
+
},
|
30 |
+
"_last_episode_starts": {
|
31 |
+
":type:": "<class 'numpy.ndarray'>",
|
32 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
33 |
+
},
|
34 |
+
"_last_original_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAH8BNvDBbAT3Qv6M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAx2FvPb0A/L0K16M8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAACciJq8vK59vmbpGD/5sIq8UWPCvP9y7ztt0YU0H8BNvDBbAT3Qv6M8W9iMOJg6GzfQVmq5JK2ptxbYF7ZgBE+sV7tLL7m5Wi7m0fu4lGgOSwFLE4aUaBJ0lFKUdS4=",
|
37 |
+
"achieved_goal": "[[-0.01255801 0.0315811 0.01998892]]",
|
38 |
+
"desired_goal": "[[ 0.05844286 -0.12304828 0.02 ]]",
|
39 |
+
"observation": "[[-1.8863969e-02 -2.4773687e-01 5.9731138e-01 -1.6930090e-02\n -2.3728998e-02 7.3074098e-03 2.4925558e-07 -1.2558012e-02\n 3.1581104e-02 1.9988924e-02 6.7160196e-05 9.2523624e-06\n -2.2348319e-04 -2.0226995e-05 -2.2626532e-06 -2.9418898e-12\n 1.8529299e-10 4.9732416e-11 -1.2007709e-04]]"
|
40 |
+
},
|
41 |
+
"_episode_num": 626,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.0,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSwGMAXSUR0BuT8k6cRUWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BuX5gPVd5ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BubUlJHy3DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bue9TaTOgQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BuilOmBOHndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BumNQEZBLPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BupsvwmVqvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ButPWlMyrQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BuwtKh+OOsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bu0K9ytFKDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bu4CGpMpPRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bu779GZuyedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvA3R9gF5fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvFuBz3h4udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvLL2vjfeldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvPG9WZJCjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvSmBreqJedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvWTcVQAMldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvZwgxJul5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvdQQFs54odX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BvdU0aZQYUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bvg6hQFcIJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvkbWkJrtWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvoAhyKekIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvrYJ1JUYLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvvF8JD3M7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvzCsQumJndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bv2g/9pAUtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bv58Q04zacdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bv9kXenAIqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwAkb3oLXudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwCTaK1og3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwELTYukDZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwF9as6q82dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwHxEWqLjxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwJjoA4n4PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwLWgJ1JUYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwNJmlImPYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwP29VWCEpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwSPGIbfgrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwU6YTj/+9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwWsKE384xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwYm+nIhhZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bwac1wYLssdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwcZwOvt+kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BweI9yLhrFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bwf+fnOjZddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwhySB9TgmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwjixRl6JJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwlVmSQo1DdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BwlYAAAAAAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwnMFNcnmadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwpGAMDwH8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bwq8KneiztdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bws1uHerMldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bwu6SidrftdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bwu8nZ00WNdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bwu+//NqxkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwwqFEiMYNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwykaFVT73dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw0TCrLhaUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw2JzcRDkVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw36qU/wAmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw524pc5bRdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bw55OFg2IgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw7zDO1OTJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw9+4b0e2edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxAcy9EkSmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxDFWyTpxFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxFbzAeq7zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxHKi0v4/NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxI8R02cawdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxKxsJpnHvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BxK0BbOeJ6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxMjPrv9cbdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BxMljnV5KOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxOWNlyzX0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxQHqLS/j9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxSDZ+QU5/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxTw9ZA6dUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxVipzcRDkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BxVk5QxesxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxXa/dqL0jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxZQa6z3RHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxbOlN1yNodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxdJUwSJ0odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bxe72vjfeldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxgtsJpnHvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BxgwDvE0iydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxijDHfdhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxkRloUSIydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxmC+j/MnrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bxn0THsC1adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bxplo7FKkEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxrXXz19ORdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxtVn6Eal2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bxvyi7CiyqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxyNq7AckudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bx0lXYDklvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bx2Ui9qUNbdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiJiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiIiJiYmJiYmIiYmJiYmJiYmIiYiJiYmJiYiJiYmJiYmIiYmJiYmJiYmJiYllLg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 29900,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
57 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
58 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
59 |
+
"_shape": null,
|
60 |
+
"dtype": null,
|
61 |
+
"_np_random": null
|
62 |
+
},
|
63 |
+
"action_space": {
|
64 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
65 |
+
":serialized:": "gAWVagIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ43gpRSfmBfx7GDaEFd08KYwDaW5jlIoQ79svi7tVIrL3LDVaZqN7dHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
66 |
+
"dtype": "float32",
|
67 |
+
"bounded_below": "[ True True True True]",
|
68 |
+
"bounded_above": "[ True True True True]",
|
69 |
+
"_shape": [
|
70 |
+
4
|
71 |
+
],
|
72 |
+
"low": "[-1. -1. -1. -1.]",
|
73 |
+
"high": "[1. 1. 1. 1.]",
|
74 |
+
"low_repr": "-1.0",
|
75 |
+
"high_repr": "1.0",
|
76 |
+
"_np_random": "Generator(PCG64)"
|
77 |
+
},
|
78 |
+
"n_envs": 1,
|
79 |
+
"buffer_size": 1000000,
|
80 |
+
"batch_size": 256,
|
81 |
+
"learning_starts": 100,
|
82 |
+
"tau": 0.005,
|
83 |
+
"gamma": 0.99,
|
84 |
+
"gradient_steps": 1,
|
85 |
+
"optimize_memory_usage": false,
|
86 |
+
"replay_buffer_class": {
|
87 |
+
":type:": "<class 'abc.ABCMeta'>",
|
88 |
+
":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
|
89 |
+
"__module__": "stable_baselines3.common.buffers",
|
90 |
+
"__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
|
91 |
+
"__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
92 |
+
"__init__": "<function DictReplayBuffer.__init__ at 0x7c432e30dbd0>",
|
93 |
+
"add": "<function DictReplayBuffer.add at 0x7c432e30dc60>",
|
94 |
+
"sample": "<function DictReplayBuffer.sample at 0x7c432e30dcf0>",
|
95 |
+
"_get_samples": "<function DictReplayBuffer._get_samples at 0x7c432e30dd80>",
|
96 |
+
"__abstractmethods__": "frozenset()",
|
97 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c432e3061c0>"
|
98 |
+
},
|
99 |
+
"replay_buffer_kwargs": {},
|
100 |
+
"train_freq": {
|
101 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
102 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
103 |
+
},
|
104 |
+
"use_sde_at_warmup": false,
|
105 |
+
"policy_delay": 1,
|
106 |
+
"target_noise_clip": 0.0,
|
107 |
+
"target_policy_noise": 0.1,
|
108 |
+
"lr_schedule": {
|
109 |
+
":type:": "<class 'function'>",
|
110 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
111 |
+
},
|
112 |
+
"actor_batch_norm_stats": [],
|
113 |
+
"critic_batch_norm_stats": [],
|
114 |
+
"actor_batch_norm_stats_target": [],
|
115 |
+
"critic_batch_norm_stats_target": []
|
116 |
+
}
|
DDPG-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6552d049ff7d28958bc6d09a67fd1d77863720a4c194ebcf4547ec978f17d1e
|
3 |
+
size 2125326
|
DDPG-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
DDPG-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.3.0a4
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DDPG
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DDPG** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **DDPG** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7c432e1d5e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c432e1cf600>"}, "verbose": 0, "policy_kwargs": {"n_critics": 1}, "num_timesteps": 30000, "_total_timesteps": 30000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710699512561460313, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAhMNNvBhbAT3Qv6M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAx2FvPb0A/L0K16M8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAAD0jKq8UUCAvkoeGT9ejoG8vLW3vCgD1jv8jI40hMNNvBhbAT3Qv6M8XNiMOJs6GzcoYG+5/qypt2/XF7bgQk+sLZhLL/okXC5W1Pu4lGgOSwFLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.01255882 0.03158101 0.01998892]]", "desired_goal": "[[ 0.05844286 -0.12304828 0.02 ]]", "observation": "[[-2.0819165e-02 -2.5049070e-01 5.9811842e-01 -1.5814956e-02\n -2.2425525e-02 6.5311380e-03 2.6552141e-07 -1.2558822e-02\n 3.1581014e-02 1.9988924e-02 6.7160203e-05 9.2523651e-06\n -2.2828637e-04 -2.0226926e-05 -2.2626152e-06 -2.9453592e-12\n 1.8516806e-10 5.0055050e-11 -1.2008163e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAH8BNvDBbAT3Qv6M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAx2FvPb0A/L0K16M8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAACciJq8vK59vmbpGD/5sIq8UWPCvP9y7ztt0YU0H8BNvDBbAT3Qv6M8W9iMOJg6GzfQVmq5JK2ptxbYF7ZgBE+sV7tLL7m5Wi7m0fu4lGgOSwFLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.01255801 0.0315811 0.01998892]]", "desired_goal": "[[ 0.05844286 -0.12304828 0.02 ]]", "observation": "[[-1.8863969e-02 -2.4773687e-01 5.9731138e-01 -1.6930090e-02\n -2.3728998e-02 7.3074098e-03 2.4925558e-07 -1.2558012e-02\n 3.1581104e-02 1.9988924e-02 6.7160196e-05 9.2523624e-06\n -2.2348319e-04 -2.0226995e-05 -2.2626532e-06 -2.9418898e-12\n 1.8529299e-10 4.9732416e-11 -1.2007709e-04]]"}, "_episode_num": 626, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSwGMAXSUR0BuT8k6cRUWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BuX5gPVd5ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BubUlJHy3DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bue9TaTOgQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BuilOmBOHndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BumNQEZBLPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BupsvwmVqvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ButPWlMyrQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BuwtKh+OOsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bu0K9ytFKDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bu4CGpMpPRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bu779GZuyedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvA3R9gF5fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvFuBz3h4udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvLL2vjfeldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvPG9WZJCjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvSmBreqJedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvWTcVQAMldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvZwgxJul5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvdQQFs54odX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BvdU0aZQYUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bvg6hQFcIJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvkbWkJrtWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvoAhyKekIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvrYJ1JUYLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvvF8JD3M7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BvzCsQumJndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bv2g/9pAUtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bv58Q04zacdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bv9kXenAIqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwAkb3oLXudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwCTaK1og3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwELTYukDZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwF9as6q82dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwHxEWqLjxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwJjoA4n4PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwLWgJ1JUYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwNJmlImPYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwP29VWCEpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwSPGIbfgrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwU6YTj/+9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwWsKE384xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwYm+nIhhZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bwac1wYLssdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwcZwOvt+kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BweI9yLhrFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bwf+fnOjZddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwhySB9TgmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwjixRl6JJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwlVmSQo1DdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BwlYAAAAAAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwnMFNcnmadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwpGAMDwH8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bwq8KneiztdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bws1uHerMldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bwu6SidrftdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bwu8nZ00WNdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bwu+//NqxkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwwqFEiMYNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BwykaFVT73dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw0TCrLhaUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw2JzcRDkVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw36qU/wAmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw524pc5bRdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bw55OFg2IgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw7zDO1OTJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bw9+4b0e2edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxAcy9EkSmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxDFWyTpxFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxFbzAeq7zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxHKi0v4/NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxI8R02cawdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxKxsJpnHvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BxK0BbOeJ6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxMjPrv9cbdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BxMljnV5KOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxOWNlyzX0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxQHqLS/j9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxSDZ+QU5/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxTw9ZA6dUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxVipzcRDkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BxVk5QxesxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxXa/dqL0jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxZQa6z3RHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxbOlN1yNodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxdJUwSJ0odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bxe72vjfeldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxgtsJpnHvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BxgwDvE0iydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxijDHfdhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxkRloUSIydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxmC+j/MnrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bxn0THsC1adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bxplo7FKkEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxrXXz19ORdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxtVn6Eal2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bxvyi7CiyqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BxyNq7AckudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bx0lXYDklvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bx2Ui9qUNbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiJiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiIiJiYmJiYmIiYmJiYmJiYmIiYiJiYmJiYiJiYmJiYmIiYmJiYmJiYmJiYllLg=="}, "_n_updates": 29900, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVagIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ43gpRSfmBfx7GDaEFd08KYwDaW5jlIoQ79svi7tVIrL3LDVaZqN7dHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7c432e30dbd0>", "add": "<function DictReplayBuffer.add at 0x7c432e30dc60>", "sample": "<function DictReplayBuffer.sample at 0x7c432e30dcf0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7c432e30dd80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c432e3061c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.3.0a4", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
ADDED
Binary file (715 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-17T18:32:40.540937"}
|