pierreguillou
commited on
Commit
·
770d60c
1
Parent(s):
8f55196
Update README.md
Browse files
README.md
CHANGED
@@ -22,19 +22,19 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: F1
|
24 |
type: f1
|
25 |
-
value: 0.
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: Accuracy
|
33 |
type: accuracy
|
34 |
value: 0.9759397808828684
|
35 |
- name: Loss
|
36 |
type: loss
|
37 |
-
value: 0.
|
38 |
widget:
|
39 |
- text: "Ao Instituto Médico Legal da jurisdição do acidente ou da residência cumpre fornecer, no prazo de 90 dias, laudo à vítima (art. 5, § 5, Lei n. 6.194/74 de 19 de dezembro de 1974), função técnica que pode ser suprida por prova pericial realizada por ordem do juízo da causa, ou por prova técnica realizada no âmbito administrativo que se mostre coerente com os demais elementos de prova constante dos autos."
|
40 |
- text: "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial."
|
@@ -46,11 +46,11 @@ widget:
|
|
46 |
**ner-bert-base-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [pierreguillou/bert-base-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective.
|
47 |
|
48 |
Due to the small size of BERTimbau base and finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*):
|
49 |
-
- **f1**: 0.
|
50 |
-
- **precision**: 0.
|
51 |
-
- **recall**: 0.
|
52 |
- **accuracy**: 0.9759397808828684
|
53 |
-
- **loss**: 0.
|
54 |
|
55 |
Check as well the [large version of this model](https://huggingface.co/pierreguillou/ner-bert-large-cased-pt-lenerbr) with a f1 of 0.908.
|
56 |
|
@@ -117,20 +117,20 @@ The notebook of finetuning ([HuggingFace_Notebook_token_classification_NER_LeNER
|
|
117 |
### Hyperparameters
|
118 |
|
119 |
#### batch, learning rate...
|
120 |
-
- per_device_batch_size =
|
121 |
- gradient_accumulation_steps = 2
|
122 |
- learning_rate = 2e-5
|
123 |
-
- num_train_epochs =
|
124 |
- weight_decay = 0.01
|
125 |
- optimizer = AdamW
|
126 |
- betas = (0.9,0.999)
|
127 |
- epsilon = 1e-08
|
128 |
- lr_scheduler_type = linear
|
129 |
-
- seed =
|
130 |
|
131 |
#### save model & load best model
|
132 |
-
- save_total_limit =
|
133 |
-
- logging_steps =
|
134 |
- eval_steps = logging_steps
|
135 |
- evaluation_strategy = 'steps'
|
136 |
- logging_strategy = 'steps'
|
@@ -147,53 +147,112 @@ The notebook of finetuning ([HuggingFace_Notebook_token_classification_NER_LeNER
|
|
147 |
|
148 |
````
|
149 |
Num examples = 7828
|
150 |
-
Num Epochs =
|
151 |
-
Instantaneous batch size per device =
|
152 |
-
Total train batch size (w. parallel, distributed & accumulation) =
|
153 |
Gradient Accumulation steps = 2
|
154 |
-
Total optimization steps =
|
155 |
|
156 |
Step Training Loss Validation Loss Precision Recall F1 Accuracy
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
````
|
166 |
|
167 |
### Validation metrics by Named Entity
|
168 |
````
|
169 |
Num examples = 1177
|
170 |
|
171 |
-
{'JURISPRUDENCIA': {'f1': 0.
|
172 |
'number': 657,
|
173 |
-
'precision': 0.
|
174 |
-
'recall': 0.
|
175 |
-
'LEGISLACAO': {'f1': 0.
|
176 |
'number': 571,
|
177 |
-
'precision': 0.
|
178 |
-
'recall': 0.
|
179 |
-
'LOCAL': {'f1': 0.
|
180 |
'number': 194,
|
181 |
-
'precision': 0.
|
182 |
-
'recall': 0.
|
183 |
-
'ORGANIZACAO': {'f1': 0.
|
184 |
'number': 1340,
|
185 |
-
'precision': 0.
|
186 |
-
'recall': 0.
|
187 |
-
'PESSOA': {'f1': 0.
|
188 |
'number': 1072,
|
189 |
-
'precision': 0.
|
190 |
-
'recall': 0.
|
191 |
-
'TEMPO': {'f1': 0.
|
192 |
'number': 816,
|
193 |
-
'precision': 0.
|
194 |
-
'recall': 0.
|
195 |
-
'overall_accuracy': 0.
|
196 |
-
'overall_f1': 0.
|
197 |
-
'overall_precision': 0.
|
198 |
-
'overall_recall': 0.
|
199 |
````
|
|
|
22 |
metrics:
|
23 |
- name: F1
|
24 |
type: f1
|
25 |
+
value: 0.8926146010186757
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8810222036028488
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9045161290322581
|
32 |
- name: Accuracy
|
33 |
type: accuracy
|
34 |
value: 0.9759397808828684
|
35 |
- name: Loss
|
36 |
type: loss
|
37 |
+
value: 0.18803243339061737
|
38 |
widget:
|
39 |
- text: "Ao Instituto Médico Legal da jurisdição do acidente ou da residência cumpre fornecer, no prazo de 90 dias, laudo à vítima (art. 5, § 5, Lei n. 6.194/74 de 19 de dezembro de 1974), função técnica que pode ser suprida por prova pericial realizada por ordem do juízo da causa, ou por prova técnica realizada no âmbito administrativo que se mostre coerente com os demais elementos de prova constante dos autos."
|
40 |
- text: "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial."
|
|
|
46 |
**ner-bert-base-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [pierreguillou/bert-base-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective.
|
47 |
|
48 |
Due to the small size of BERTimbau base and finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*):
|
49 |
+
- **f1**: 0.8926146010186757
|
50 |
+
- **precision**: 0.8810222036028488
|
51 |
+
- **recall**: 0.9045161290322581
|
52 |
- **accuracy**: 0.9759397808828684
|
53 |
+
- **loss**: 0.18803243339061737
|
54 |
|
55 |
Check as well the [large version of this model](https://huggingface.co/pierreguillou/ner-bert-large-cased-pt-lenerbr) with a f1 of 0.908.
|
56 |
|
|
|
117 |
### Hyperparameters
|
118 |
|
119 |
#### batch, learning rate...
|
120 |
+
- per_device_batch_size = 2
|
121 |
- gradient_accumulation_steps = 2
|
122 |
- learning_rate = 2e-5
|
123 |
+
- num_train_epochs = 10
|
124 |
- weight_decay = 0.01
|
125 |
- optimizer = AdamW
|
126 |
- betas = (0.9,0.999)
|
127 |
- epsilon = 1e-08
|
128 |
- lr_scheduler_type = linear
|
129 |
+
- seed = 7
|
130 |
|
131 |
#### save model & load best model
|
132 |
+
- save_total_limit = 2
|
133 |
+
- logging_steps = 300
|
134 |
- eval_steps = logging_steps
|
135 |
- evaluation_strategy = 'steps'
|
136 |
- logging_strategy = 'steps'
|
|
|
147 |
|
148 |
````
|
149 |
Num examples = 7828
|
150 |
+
Num Epochs = 10
|
151 |
+
Instantaneous batch size per device = 2
|
152 |
+
Total train batch size (w. parallel, distributed & accumulation) = 4
|
153 |
Gradient Accumulation steps = 2
|
154 |
+
Total optimization steps = 19570
|
155 |
|
156 |
Step Training Loss Validation Loss Precision Recall F1 Accuracy
|
157 |
+
300 0.127600 0.178613 0.722909 0.741720 0.732194 0.948802
|
158 |
+
600 0.088200 0.136965 0.733636 0.867742 0.795074 0.963079
|
159 |
+
900 0.078000 0.128858 0.791912 0.838065 0.814335 0.965243
|
160 |
+
1200 0.077800 0.126345 0.815400 0.865376 0.839645 0.967849
|
161 |
+
1500 0.074100 0.148207 0.779274 0.895914 0.833533 0.960184
|
162 |
+
1800 0.059500 0.116634 0.830829 0.868172 0.849090 0.969342
|
163 |
+
2100 0.044500 0.208459 0.887150 0.816559 0.850392 0.960535
|
164 |
+
2400 0.029400 0.136352 0.867821 0.851398 0.859531 0.970271
|
165 |
+
2700 0.025000 0.165837 0.814881 0.878495 0.845493 0.961235
|
166 |
+
3000 0.038400 0.120629 0.811719 0.893763 0.850768 0.971506
|
167 |
+
3300 0.026200 0.175094 0.823435 0.882581 0.851983 0.962957
|
168 |
+
3600 0.025600 0.178438 0.881095 0.886022 0.883551 0.963689
|
169 |
+
3900 0.041000 0.134648 0.789035 0.916129 0.847846 0.967681
|
170 |
+
4200 0.026700 0.130178 0.821275 0.903226 0.860303 0.972313
|
171 |
+
4500 0.018500 0.139294 0.844016 0.875054 0.859255 0.971140
|
172 |
+
4800 0.020800 0.197811 0.892504 0.873118 0.882705 0.965883
|
173 |
+
5100 0.019300 0.161239 0.848746 0.888172 0.868012 0.967849
|
174 |
+
5400 0.024000 0.139131 0.837507 0.913333 0.873778 0.970591
|
175 |
+
5700 0.018400 0.157223 0.899754 0.864731 0.881895 0.970210
|
176 |
+
6000 0.023500 0.137022 0.883018 0.873333 0.878149 0.973243
|
177 |
+
6300 0.009300 0.181448 0.840490 0.900860 0.869628 0.968290
|
178 |
+
6600 0.019200 0.173125 0.821316 0.896559 0.857290 0.966736
|
179 |
+
6900 0.016100 0.143160 0.789938 0.904946 0.843540 0.968245
|
180 |
+
7200 0.017000 0.145755 0.823274 0.897634 0.858848 0.969037
|
181 |
+
7500 0.012100 0.159342 0.825694 0.883226 0.853491 0.967468
|
182 |
+
7800 0.013800 0.194886 0.861237 0.859570 0.860403 0.964771
|
183 |
+
8100 0.008000 0.140271 0.829914 0.896129 0.861752 0.971567
|
184 |
+
8400 0.010300 0.143318 0.826844 0.908817 0.865895 0.973578
|
185 |
+
8700 0.015000 0.143392 0.847336 0.889247 0.867786 0.973365
|
186 |
+
9000 0.006000 0.143512 0.847795 0.905591 0.875741 0.972892
|
187 |
+
9300 0.011800 0.138747 0.827133 0.894194 0.859357 0.971673
|
188 |
+
9600 0.008500 0.159490 0.837030 0.909032 0.871546 0.970028
|
189 |
+
9900 0.010700 0.159249 0.846692 0.910968 0.877655 0.970546
|
190 |
+
10200 0.008100 0.170069 0.848288 0.900645 0.873683 0.969113
|
191 |
+
10500 0.004800 0.183795 0.860317 0.899355 0.879403 0.969570
|
192 |
+
10800 0.010700 0.157024 0.837838 0.906667 0.870894 0.971094
|
193 |
+
11100 0.003800 0.164286 0.845312 0.880215 0.862410 0.970744
|
194 |
+
11400 0.009700 0.204025 0.884294 0.887527 0.885907 0.968854
|
195 |
+
11700 0.008900 0.162819 0.829415 0.887742 0.857588 0.970530
|
196 |
+
12000 0.006400 0.164296 0.852666 0.901075 0.876202 0.971414
|
197 |
+
12300 0.007100 0.143367 0.852959 0.895699 0.873807 0.973669
|
198 |
+
12600 0.015800 0.153383 0.859224 0.900430 0.879345 0.972679
|
199 |
+
12900 0.006600 0.173447 0.869954 0.899140 0.884306 0.970927
|
200 |
+
13200 0.006800 0.163234 0.856849 0.897204 0.876563 0.971795
|
201 |
+
13500 0.003200 0.167164 0.850867 0.907957 0.878485 0.971231
|
202 |
+
13800 0.003600 0.148950 0.867801 0.910538 0.888656 0.976961
|
203 |
+
14100 0.003500 0.155691 0.847621 0.907957 0.876752 0.974127
|
204 |
+
14400 0.003300 0.157672 0.846553 0.911183 0.877680 0.974584
|
205 |
+
14700 0.002500 0.169965 0.847804 0.917634 0.881338 0.973045
|
206 |
+
15000 0.003400 0.177099 0.842199 0.912473 0.875929 0.971155
|
207 |
+
15300 0.006000 0.164151 0.848928 0.911183 0.878954 0.973258
|
208 |
+
15600 0.002400 0.174305 0.847437 0.906667 0.876052 0.971765
|
209 |
+
15900 0.004100 0.174561 0.852929 0.907957 0.879583 0.972907
|
210 |
+
16200 0.002600 0.172626 0.843263 0.907097 0.874016 0.972100
|
211 |
+
16500 0.002100 0.185302 0.841108 0.907312 0.872957 0.970485
|
212 |
+
16800 0.002900 0.175638 0.840557 0.909247 0.873554 0.971704
|
213 |
+
17100 0.001600 0.178750 0.857056 0.906452 0.881062 0.971765
|
214 |
+
17400 0.003900 0.188910 0.853619 0.907957 0.879950 0.970835
|
215 |
+
17700 0.002700 0.180822 0.864699 0.907097 0.885390 0.972283
|
216 |
+
18000 0.001300 0.179974 0.868150 0.906237 0.886785 0.973060
|
217 |
+
|
218 |
+
18300 0.000800 0.188032 0.881022 0.904516 0.892615 0.972572
|
219 |
+
|
220 |
+
18600 0.002700 0.183266 0.868601 0.901290 0.884644 0.972298
|
221 |
+
18900 0.001600 0.180301 0.862041 0.903011 0.882050 0.972344
|
222 |
+
19200 0.002300 0.183432 0.855370 0.904301 0.879155 0.971109
|
223 |
+
19500 0.001800 0.183381 0.854501 0.904301 0.878696 0.97118630
|
224 |
````
|
225 |
|
226 |
### Validation metrics by Named Entity
|
227 |
````
|
228 |
Num examples = 1177
|
229 |
|
230 |
+
{'JURISPRUDENCIA': {'f1': 0.7016574585635359,
|
231 |
'number': 657,
|
232 |
+
'precision': 0.6422250316055625,
|
233 |
+
'recall': 0.7732115677321156},
|
234 |
+
'LEGISLACAO': {'f1': 0.8839681133746677,
|
235 |
'number': 571,
|
236 |
+
'precision': 0.8942652329749103,
|
237 |
+
'recall': 0.8739054290718039},
|
238 |
+
'LOCAL': {'f1': 0.8253968253968254,
|
239 |
'number': 194,
|
240 |
+
'precision': 0.7368421052631579,
|
241 |
+
'recall': 0.9381443298969072},
|
242 |
+
'ORGANIZACAO': {'f1': 0.8934049079754601,
|
243 |
'number': 1340,
|
244 |
+
'precision': 0.918769716088328,
|
245 |
+
'recall': 0.8694029850746269},
|
246 |
+
'PESSOA': {'f1': 0.982653539615565,
|
247 |
'number': 1072,
|
248 |
+
'precision': 0.9877474081055608,
|
249 |
+
'recall': 0.9776119402985075},
|
250 |
+
'TEMPO': {'f1': 0.9657657657657657,
|
251 |
'number': 816,
|
252 |
+
'precision': 0.9469964664310954,
|
253 |
+
'recall': 0.9852941176470589},
|
254 |
+
'overall_accuracy': 0.9725722644643211,
|
255 |
+
'overall_f1': 0.8926146010186757,
|
256 |
+
'overall_precision': 0.8810222036028488,
|
257 |
+
'overall_recall': 0.9045161290322581}
|
258 |
````
|