pierreguillou commited on
Commit
0035cbd
1 Parent(s): f35a4f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -37
README.md CHANGED
@@ -153,10 +153,10 @@ Total train batch size (w. parallel, distributed & accumulation) = 4
153
  Gradient Accumulation steps = 2
154
  Total optimization steps = 19570
155
 
156
- Step Training Loss Validation Loss Precision Recall F1 Accuracy
157
- 300 0.127600 0.178613 0.722909 0.741720 0.732194 0.948802
158
- 600 0.088200 0.136965 0.733636 0.867742 0.795074 0.963079
159
- 900 0.078000 0.128858 0.791912 0.838065 0.814335 0.965243
160
  1200 0.077800 0.126345 0.815400 0.865376 0.839645 0.967849
161
  1500 0.074100 0.148207 0.779274 0.895914 0.833533 0.960184
162
  1800 0.059500 0.116634 0.830829 0.868172 0.849090 0.969342
@@ -179,7 +179,7 @@ Step Training Loss Validation Loss Precision Recall F1 Accuracy
179
  6900 0.016100 0.143160 0.789938 0.904946 0.843540 0.968245
180
  7200 0.017000 0.145755 0.823274 0.897634 0.858848 0.969037
181
  7500 0.012100 0.159342 0.825694 0.883226 0.853491 0.967468
182
- 7800 0.013800 0.194886 0.861237 0.859570 0.860403 0.964771
183
  8100 0.008000 0.140271 0.829914 0.896129 0.861752 0.971567
184
  8400 0.010300 0.143318 0.826844 0.908817 0.865895 0.973578
185
  8700 0.015000 0.143392 0.847336 0.889247 0.867786 0.973365
@@ -187,40 +187,40 @@ Step Training Loss Validation Loss Precision Recall F1 Accuracy
187
  9300 0.011800 0.138747 0.827133 0.894194 0.859357 0.971673
188
  9600 0.008500 0.159490 0.837030 0.909032 0.871546 0.970028
189
  9900 0.010700 0.159249 0.846692 0.910968 0.877655 0.970546
190
- 10200 0.008100 0.170069 0.848288 0.900645 0.873683 0.969113
191
- 10500 0.004800 0.183795 0.860317 0.899355 0.879403 0.969570
192
- 10800 0.010700 0.157024 0.837838 0.906667 0.870894 0.971094
193
- 11100 0.003800 0.164286 0.845312 0.880215 0.862410 0.970744
194
- 11400 0.009700 0.204025 0.884294 0.887527 0.885907 0.968854
195
- 11700 0.008900 0.162819 0.829415 0.887742 0.857588 0.970530
196
- 12000 0.006400 0.164296 0.852666 0.901075 0.876202 0.971414
197
- 12300 0.007100 0.143367 0.852959 0.895699 0.873807 0.973669
198
- 12600 0.015800 0.153383 0.859224 0.900430 0.879345 0.972679
199
- 12900 0.006600 0.173447 0.869954 0.899140 0.884306 0.970927
200
- 13200 0.006800 0.163234 0.856849 0.897204 0.876563 0.971795
201
- 13500 0.003200 0.167164 0.850867 0.907957 0.878485 0.971231
202
- 13800 0.003600 0.148950 0.867801 0.910538 0.888656 0.976961
203
- 14100 0.003500 0.155691 0.847621 0.907957 0.876752 0.974127
204
- 14400 0.003300 0.157672 0.846553 0.911183 0.877680 0.974584
205
- 14700 0.002500 0.169965 0.847804 0.917634 0.881338 0.973045
206
- 15000 0.003400 0.177099 0.842199 0.912473 0.875929 0.971155
207
- 15300 0.006000 0.164151 0.848928 0.911183 0.878954 0.973258
208
- 15600 0.002400 0.174305 0.847437 0.906667 0.876052 0.971765
209
- 15900 0.004100 0.174561 0.852929 0.907957 0.879583 0.972907
210
- 16200 0.002600 0.172626 0.843263 0.907097 0.874016 0.972100
211
- 16500 0.002100 0.185302 0.841108 0.907312 0.872957 0.970485
212
- 16800 0.002900 0.175638 0.840557 0.909247 0.873554 0.971704
213
- 17100 0.001600 0.178750 0.857056 0.906452 0.881062 0.971765
214
- 17400 0.003900 0.188910 0.853619 0.907957 0.879950 0.970835
215
- 17700 0.002700 0.180822 0.864699 0.907097 0.885390 0.972283
216
- 18000 0.001300 0.179974 0.868150 0.906237 0.886785 0.973060
217
 
218
- 18300 0.000800 0.188032 0.881022 0.904516 0.892615 0.972572
219
 
220
- 18600 0.002700 0.183266 0.868601 0.901290 0.884644 0.972298
221
- 18900 0.001600 0.180301 0.862041 0.903011 0.882050 0.972344
222
- 19200 0.002300 0.183432 0.855370 0.904301 0.879155 0.971109
223
- 19500 0.001800 0.183381 0.854501 0.904301 0.878696 0.971186
224
  ````
225
 
226
  ### Validation metrics by Named Entity
 
153
  Gradient Accumulation steps = 2
154
  Total optimization steps = 19570
155
 
156
+ Step Training Loss Validation Loss Precision Recall F1 Accuracy
157
+ 300 0.127600 0.178613 0.722909 0.741720 0.732194 0.948802
158
+ 600 0.088200 0.136965 0.733636 0.867742 0.795074 0.963079
159
+ 900 0.078000 0.128858 0.791912 0.838065 0.814335 0.965243
160
  1200 0.077800 0.126345 0.815400 0.865376 0.839645 0.967849
161
  1500 0.074100 0.148207 0.779274 0.895914 0.833533 0.960184
162
  1800 0.059500 0.116634 0.830829 0.868172 0.849090 0.969342
 
179
  6900 0.016100 0.143160 0.789938 0.904946 0.843540 0.968245
180
  7200 0.017000 0.145755 0.823274 0.897634 0.858848 0.969037
181
  7500 0.012100 0.159342 0.825694 0.883226 0.853491 0.967468
182
+ 7800 0.013800 0.194886 0.861237 0.859570 0.860403 0.964771
183
  8100 0.008000 0.140271 0.829914 0.896129 0.861752 0.971567
184
  8400 0.010300 0.143318 0.826844 0.908817 0.865895 0.973578
185
  8700 0.015000 0.143392 0.847336 0.889247 0.867786 0.973365
 
187
  9300 0.011800 0.138747 0.827133 0.894194 0.859357 0.971673
188
  9600 0.008500 0.159490 0.837030 0.909032 0.871546 0.970028
189
  9900 0.010700 0.159249 0.846692 0.910968 0.877655 0.970546
190
+ 10200 0.008100 0.170069 0.848288 0.900645 0.873683 0.969113
191
+ 10500 0.004800 0.183795 0.860317 0.899355 0.879403 0.969570
192
+ 10800 0.010700 0.157024 0.837838 0.906667 0.870894 0.971094
193
+ 11100 0.003800 0.164286 0.845312 0.880215 0.862410 0.970744
194
+ 11400 0.009700 0.204025 0.884294 0.887527 0.885907 0.968854
195
+ 11700 0.008900 0.162819 0.829415 0.887742 0.857588 0.970530
196
+ 12000 0.006400 0.164296 0.852666 0.901075 0.876202 0.971414
197
+ 12300 0.007100 0.143367 0.852959 0.895699 0.873807 0.973669
198
+ 12600 0.015800 0.153383 0.859224 0.900430 0.879345 0.972679
199
+ 12900 0.006600 0.173447 0.869954 0.899140 0.884306 0.970927
200
+ 13200 0.006800 0.163234 0.856849 0.897204 0.876563 0.971795
201
+ 13500 0.003200 0.167164 0.850867 0.907957 0.878485 0.971231
202
+ 13800 0.003600 0.148950 0.867801 0.910538 0.888656 0.976961
203
+ 14100 0.003500 0.155691 0.847621 0.907957 0.876752 0.974127
204
+ 14400 0.003300 0.157672 0.846553 0.911183 0.877680 0.974584
205
+ 14700 0.002500 0.169965 0.847804 0.917634 0.881338 0.973045
206
+ 15000 0.003400 0.177099 0.842199 0.912473 0.875929 0.971155
207
+ 15300 0.006000 0.164151 0.848928 0.911183 0.878954 0.973258
208
+ 15600 0.002400 0.174305 0.847437 0.906667 0.876052 0.971765
209
+ 15900 0.004100 0.174561 0.852929 0.907957 0.879583 0.972907
210
+ 16200 0.002600 0.172626 0.843263 0.907097 0.874016 0.972100
211
+ 16500 0.002100 0.185302 0.841108 0.907312 0.872957 0.970485
212
+ 16800 0.002900 0.175638 0.840557 0.909247 0.873554 0.971704
213
+ 17100 0.001600 0.178750 0.857056 0.906452 0.881062 0.971765
214
+ 17400 0.003900 0.188910 0.853619 0.907957 0.879950 0.970835
215
+ 17700 0.002700 0.180822 0.864699 0.907097 0.885390 0.972283
216
+ 18000 0.001300 0.179974 0.868150 0.906237 0.886785 0.973060
217
 
218
+ 18300 0.000800 0.188032 0.881022 0.904516 0.892615 0.972572
219
 
220
+ 18600 0.002700 0.183266 0.868601 0.901290 0.884644 0.972298
221
+ 18900 0.001600 0.180301 0.862041 0.903011 0.882050 0.972344
222
+ 19200 0.002300 0.183432 0.855370 0.904301 0.879155 0.971109
223
+ 19500 0.001800 0.183381 0.854501 0.904301 0.878696 0.971186
224
  ````
225
 
226
  ### Validation metrics by Named Entity