PhoBert_Lexical_CITA_15k
This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6530
- Accuracy: 0.8047
- F1: 0.7676
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.476 | 1.0 | 375 | 0.4315 | 0.8037 | 0.7539 |
| 0.3951 | 2.0 | 750 | 0.4368 | 0.8143 | 0.7795 |
| 0.3517 | 3.0 | 1125 | 0.4516 | 0.8147 | 0.7685 |
| 0.3025 | 4.0 | 1500 | 0.4954 | 0.8127 | 0.7574 |
| 0.2675 | 5.0 | 1875 | 0.5354 | 0.8003 | 0.7689 |
| 0.2326 | 6.0 | 2250 | 0.5403 | 0.8143 | 0.7648 |
| 0.2015 | 7.0 | 2625 | 0.5689 | 0.8117 | 0.7740 |
| 0.1757 | 8.0 | 3000 | 0.6340 | 0.8097 | 0.7693 |
| 0.16 | 9.0 | 3375 | 0.6285 | 0.8033 | 0.7679 |
| 0.1522 | 10.0 | 3750 | 0.6530 | 0.8047 | 0.7676 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for phunganhsang/PhoBert_Lexical_CITA_15k
Base model
vinai/phobert-base-v2