philschmid's picture
philschmid HF staff
add custom pipeline
07b4bca
raw
history blame
881 Bytes
from typing import Dict, List, Any
from transformers import pipeline
import holidays
class PreTrainedPipeline():
def __init__(self, path=""):
self.pipeline = pipeline("text-classification",model=path)
self.holidays = holidays.US()
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str`)
date (:obj: `str`)
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# get inputs
inputs = data.pop("inputs",data)
date = data.pop("date", None)
# check if date exists and if it is holiday
if date is not None and date in self.holidays:
return [{"label": "happy", "score": 1}]
# run normal prediction
prediction = self.pipeline(inputs)
return prediction