bge-m3-onnx / export_onnx.py
philipchung's picture
Upload export_onnx.py with huggingface_hub
04fab7f verified
raw
history blame
7.65 kB
"""This script exports BGEM3 to ONNX format which can be run using ONNX Runtime.
By default, the script does not apply any optimization to the ONNX model.
"""
import copy
import os
import shutil
from collections import OrderedDict
from pathlib import Path
from typing import Annotated
import torch
import typer
from huggingface_hub import snapshot_download
from optimum.exporters.onnx import onnx_export_from_model
from optimum.exporters.onnx.model_configs import XLMRobertaOnnxConfig
from optimum.onnxruntime import ORTModelForCustomTasks
from torch import Tensor
from transformers import (
AutoConfig,
AutoModel,
PretrainedConfig,
PreTrainedModel,
XLMRobertaConfig,
)
class BGEM3InferenceModel(PreTrainedModel):
"""Based on:
1. https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/modeling.py
2. https://huggingface.co/aapot/bge-m3-onnx/blob/main/export_onnx.py
The main changes here is that we are inheriting from `PreTrainedModel` which has the
methods .from_pretrained and .push_to_hub. This allows us to easily convert the model
"""
config_class = XLMRobertaConfig
base_model_prefix = "BGEM3InferenceModel"
model_tags = ["BAAI/bge-m3"]
def __init__(
self,
model_name: str = "BAAI/bge-m3",
colbert_dim: int = -1,
) -> None:
super().__init__(config=PretrainedConfig())
model_name = snapshot_download(repo_id=model_name)
self.config = AutoConfig.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.colbert_linear = torch.nn.Linear(
in_features=self.model.config.hidden_size,
out_features=(
self.model.config.hidden_size if colbert_dim == -1 else colbert_dim
),
)
self.sparse_linear = torch.nn.Linear(
in_features=self.model.config.hidden_size, out_features=1
)
colbert_state_dict = torch.load(
os.path.join(model_name, "colbert_linear.pt"), map_location="cpu"
)
sparse_state_dict = torch.load(
os.path.join(model_name, "sparse_linear.pt"), map_location="cpu"
)
self.colbert_linear.load_state_dict(colbert_state_dict)
self.sparse_linear.load_state_dict(sparse_state_dict)
def dense_embedding(self, last_hidden_state: Tensor) -> Tensor:
return last_hidden_state[:, 0]
def sparse_embedding(self, last_hidden_state: Tensor) -> Tensor:
with torch.no_grad():
return torch.relu(self.sparse_linear(last_hidden_state))
def colbert_embedding(
self, last_hidden_state: Tensor, attention_mask: Tensor
) -> Tensor:
with torch.no_grad():
colbert_vecs = self.colbert_linear(last_hidden_state[:, 1:])
colbert_vecs = colbert_vecs * attention_mask[:, 1:][:, :, None].float()
return colbert_vecs
def forward(
self, input_ids: Tensor, attention_mask: Tensor
) -> dict[str, dict[str, Tensor]]:
"""Forward pass of the model with custom output dict with dense, sparse, and
colbert embeddings. Dense and colbert embeddings are normalized."""
with torch.no_grad():
last_hidden_state = self.model(
input_ids=input_ids, attention_mask=attention_mask, return_dict=True
).last_hidden_state
output = {}
dense_vecs = self.dense_embedding(last_hidden_state)
output["dense_vecs"] = torch.nn.functional.normalize(dense_vecs, dim=-1)
sparse_vecs = self.sparse_embedding(last_hidden_state)
output["sparse_vecs"] = sparse_vecs
colbert_vecs = self.colbert_embedding(last_hidden_state, attention_mask)
output["colbert_vecs"] = torch.nn.functional.normalize(colbert_vecs, dim=-1)
return output
class BGEM3OnnxConfig(XLMRobertaOnnxConfig):
"""Modify RobertaOnnxConfig to include the additional outputs of the model
(dense_vecs, sparse_vecs, colbert_vecs)."""
@property
def outputs(self) -> dict[str, dict[int, str]]:
"""
Dict containing the axis definition of the output tensors to provide to the model.
Returns:
`Dict[str, Dict[int, str]]`: A mapping of each output name to a mapping of axis
position to the axes symbolic name.
"""
return copy.deepcopy(
OrderedDict(
{
"dense_vecs": {0: "batch_size", 1: "embedding"},
"sparse_vecs": {0: "batch_size", 1: "token", 2: "weight"},
"colbert_vecs": {0: "batch_size", 1: "token", 2: "embedding"},
}
)
)
def main(
output: Annotated[
str, typer.Option(help="Path to directory generated ONNX model is stored.")
] = "./onnx",
opset: Annotated[int, typer.Option(help="ONNX opset version number.")] = 17,
device: Annotated[
str, typer.Option(help="Device used to perform the export 'cpu' or 'cuda'.")
] = "cpu",
optimize: Annotated[
str,
typer.Option(
help=(
"Allows to run ONNX Runtime optimizations directly during the export. "
"Some of these optimizations are specific to ONNX Runtime, and "
"the resulting ONNX will not be usable with other runtime as OpenVINO or TensorRT. "
"Possible options:\n"
" - None: No optimization\n"
" - O1: Basic general optimizations\n"
" - O2: Basic and extended general optimizations, transformers-specific fusions\n"
" - O3: Same as O2 with GELU approximation\n"
" - O4: Same as O3 with mixed precision (fp16, GPU-only, requires `--device cuda`)"
),
),
] = None,
atol: Annotated[
str,
typer.Option(
help=(
"If specified, the absolute difference tolerance when validating the model. "
"Otherwise, the default atol for the model will be used."
)
),
] = None,
push_to_hub_repo_id: Annotated[
str,
typer.Option(
help="Huggingface Hub repo id in `namespace/model_name` format."
"If None, then model will not be pushed to Huggingface Hub."
),
] = None,
) -> None:
model = BGEM3InferenceModel(model_name="BAAI/bge-m3")
# tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-m3")
onnx_config = BGEM3OnnxConfig(config=model.config)
onnx_export_from_model(
model,
output=output,
task="feature-extraction",
custom_onnx_configs={"model": onnx_config},
opset=opset,
optimize=optimize,
atol=atol,
device=device,
)
# Copy this script and model card to export directory so it gets uploaded to Hub
try:
shutil.copy(__file__, output)
except Exception as ex:
print(f"Error copying script to export directory: {ex}")
try:
shutil.copy(str(Path(__file__).parent / "model_card.md"), output)
shutil.move(f"{output}/model_card.md", f"{output}/README.md")
except Exception as ex:
print(f"Error copying model card to export directory: {ex}")
# Optionally Push ONNX model to Hub
if push_to_hub_repo_id:
local_onnx_model = ORTModelForCustomTasks.from_pretrained(output)
local_onnx_model.push_to_hub(
save_directory=output,
repository_id=push_to_hub_repo_id,
use_auth_token=True,
)
if __name__ == "__main__":
typer.run(main)