|
|
|
|
|
""" |
|
Usage: |
|
./pruned_transducer_stateless7_streaming/jit_trace_export-zh.py \ |
|
--exp-dir $dir/exp \ |
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \ |
|
--lang-dir ./data/lang_char_bpe \ |
|
--epoch 99 \ |
|
--avg 1 \ |
|
--use-averaged-model 0 \ |
|
\ |
|
--decode-chunk-len 32 \ |
|
--num-encoder-layers "2,4,3,2,4" \ |
|
--feedforward-dims "1024,1024,1536,1536,1024" \ |
|
--nhead "8,8,8,8,8" \ |
|
--encoder-dims "384,384,384,384,384" \ |
|
--attention-dims "192,192,192,192,192" \ |
|
--encoder-unmasked-dims "256,256,256,256,256" \ |
|
--zipformer-downsampling-factors "1,2,4,8,2" \ |
|
--cnn-module-kernels "31,31,31,31,31" \ |
|
--decoder-dim 512 \ |
|
--joiner-dim 512 |
|
""" |
|
|
|
import argparse |
|
import logging |
|
from pathlib import Path |
|
|
|
import sentencepiece as spm |
|
import torch |
|
from scaling_converter import convert_scaled_to_non_scaled |
|
from train import add_model_arguments, get_params, get_transducer_model |
|
from icefall.lexicon import Lexicon |
|
|
|
from icefall.checkpoint import ( |
|
average_checkpoints, |
|
average_checkpoints_with_averaged_model, |
|
find_checkpoints, |
|
load_checkpoint, |
|
) |
|
from icefall.utils import AttributeDict, str2bool |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter |
|
) |
|
|
|
parser.add_argument( |
|
"--epoch", |
|
type=int, |
|
default=28, |
|
help="""It specifies the checkpoint to use for averaging. |
|
Note: Epoch counts from 0. |
|
You can specify --avg to use more checkpoints for model averaging.""", |
|
) |
|
|
|
parser.add_argument( |
|
"--iter", |
|
type=int, |
|
default=0, |
|
help="""If positive, --epoch is ignored and it |
|
will use the checkpoint exp_dir/checkpoint-iter.pt. |
|
You can specify --avg to use more checkpoints for model averaging. |
|
""", |
|
) |
|
|
|
parser.add_argument( |
|
"--avg", |
|
type=int, |
|
default=15, |
|
help="Number of checkpoints to average. Automatically select " |
|
"consecutive checkpoints before the checkpoint specified by " |
|
"'--epoch' and '--iter'", |
|
) |
|
|
|
parser.add_argument( |
|
"--exp-dir", |
|
type=str, |
|
default="pruned_transducer_stateless2/exp", |
|
help="""It specifies the directory where all training related |
|
files, e.g., checkpoints, log, etc, are saved |
|
""", |
|
) |
|
|
|
parser.add_argument( |
|
"--lang-dir", |
|
type=str, |
|
default="data/lang_char", |
|
help="The lang dir", |
|
) |
|
|
|
parser.add_argument( |
|
"--context-size", |
|
type=int, |
|
default=2, |
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram", |
|
) |
|
|
|
parser.add_argument( |
|
"--use-averaged-model", |
|
type=str2bool, |
|
default=True, |
|
help="Whether to load averaged model. Currently it only supports " |
|
"using --epoch. If True, it would decode with the averaged model " |
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`." |
|
"Actually only the models with epoch number of `epoch-avg` and " |
|
"`epoch` are loaded for averaging. ", |
|
) |
|
|
|
add_model_arguments(parser) |
|
|
|
return parser |
|
|
|
|
|
def export_encoder_model_jit_trace( |
|
encoder_model: torch.nn.Module, |
|
encoder_filename: str, |
|
params: AttributeDict, |
|
) -> None: |
|
"""Export the given encoder model with torch.jit.trace() |
|
|
|
Note: The warmup argument is fixed to 1. |
|
|
|
Args: |
|
encoder_model: |
|
The input encoder model |
|
encoder_filename: |
|
The filename to save the exported model. |
|
""" |
|
decode_chunk_len = params.decode_chunk_len |
|
pad_length = 7 |
|
s = f"decode_chunk_len: {decode_chunk_len}" |
|
logging.info(s) |
|
assert encoder_model.decode_chunk_size == decode_chunk_len // 2, ( |
|
encoder_model.decode_chunk_size, |
|
decode_chunk_len, |
|
) |
|
|
|
T = decode_chunk_len + pad_length |
|
|
|
x = torch.zeros(1, T, 80, dtype=torch.float32) |
|
x_lens = torch.full((1,), T, dtype=torch.int32) |
|
states = encoder_model.get_init_state(device=x.device) |
|
|
|
encoder_model.__class__.forward = encoder_model.__class__.streaming_forward |
|
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states)) |
|
traced_model.save(encoder_filename) |
|
logging.info(f"Saved to {encoder_filename}") |
|
|
|
|
|
def export_decoder_model_jit_trace( |
|
decoder_model: torch.nn.Module, |
|
decoder_filename: str, |
|
) -> None: |
|
"""Export the given decoder model with torch.jit.trace() |
|
|
|
Note: The argument need_pad is fixed to False. |
|
|
|
Args: |
|
decoder_model: |
|
The input decoder model |
|
decoder_filename: |
|
The filename to save the exported model. |
|
""" |
|
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64) |
|
need_pad = torch.tensor([False]) |
|
|
|
traced_model = torch.jit.trace(decoder_model, (y, need_pad)) |
|
traced_model.save(decoder_filename) |
|
logging.info(f"Saved to {decoder_filename}") |
|
|
|
|
|
def export_joiner_model_jit_trace( |
|
joiner_model: torch.nn.Module, |
|
joiner_filename: str, |
|
) -> None: |
|
"""Export the given joiner model with torch.jit.trace() |
|
|
|
Note: The argument project_input is fixed to True. A user should not |
|
project the encoder_out/decoder_out by himself/herself. The exported joiner |
|
will do that for the user. |
|
|
|
Args: |
|
joiner_model: |
|
The input joiner model |
|
joiner_filename: |
|
The filename to save the exported model. |
|
|
|
""" |
|
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] |
|
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] |
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) |
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) |
|
|
|
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out)) |
|
traced_model.save(joiner_filename) |
|
logging.info(f"Saved to {joiner_filename}") |
|
|
|
|
|
@torch.no_grad() |
|
def main(): |
|
args = get_parser().parse_args() |
|
args.exp_dir = Path(args.exp_dir) |
|
|
|
params = get_params() |
|
params.update(vars(args)) |
|
|
|
device = torch.device("cpu") |
|
|
|
logging.info(f"device: {device}") |
|
|
|
lexicon = Lexicon(params.lang_dir) |
|
params.blank_id = 0 |
|
params.vocab_size = max(lexicon.tokens) + 1 |
|
|
|
logging.info(params) |
|
|
|
logging.info("About to create model") |
|
model = get_transducer_model(params) |
|
|
|
if not params.use_averaged_model: |
|
if params.iter > 0: |
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ |
|
: params.avg |
|
] |
|
if len(filenames) == 0: |
|
raise ValueError( |
|
f"No checkpoints found for" |
|
f" --iter {params.iter}, --avg {params.avg}" |
|
) |
|
elif len(filenames) < params.avg: |
|
raise ValueError( |
|
f"Not enough checkpoints ({len(filenames)}) found for" |
|
f" --iter {params.iter}, --avg {params.avg}" |
|
) |
|
logging.info(f"averaging {filenames}") |
|
model.to(device) |
|
model.load_state_dict(average_checkpoints(filenames, device=device)) |
|
elif params.avg == 1: |
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) |
|
else: |
|
start = params.epoch - params.avg + 1 |
|
filenames = [] |
|
for i in range(start, params.epoch + 1): |
|
if i >= 1: |
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt") |
|
logging.info(f"averaging {filenames}") |
|
model.to(device) |
|
model.load_state_dict(average_checkpoints(filenames, device=device)) |
|
else: |
|
if params.iter > 0: |
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ |
|
: params.avg + 1 |
|
] |
|
if len(filenames) == 0: |
|
raise ValueError( |
|
f"No checkpoints found for" |
|
f" --iter {params.iter}, --avg {params.avg}" |
|
) |
|
elif len(filenames) < params.avg + 1: |
|
raise ValueError( |
|
f"Not enough checkpoints ({len(filenames)}) found for" |
|
f" --iter {params.iter}, --avg {params.avg}" |
|
) |
|
filename_start = filenames[-1] |
|
filename_end = filenames[0] |
|
logging.info( |
|
"Calculating the averaged model over iteration checkpoints" |
|
f" from {filename_start} (excluded) to {filename_end}" |
|
) |
|
model.to(device) |
|
model.load_state_dict( |
|
average_checkpoints_with_averaged_model( |
|
filename_start=filename_start, |
|
filename_end=filename_end, |
|
device=device, |
|
) |
|
) |
|
else: |
|
assert params.avg > 0, params.avg |
|
start = params.epoch - params.avg |
|
assert start >= 1, start |
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt" |
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" |
|
logging.info( |
|
f"Calculating the averaged model over epoch range from " |
|
f"{start} (excluded) to {params.epoch}" |
|
) |
|
model.to(device) |
|
model.load_state_dict( |
|
average_checkpoints_with_averaged_model( |
|
filename_start=filename_start, |
|
filename_end=filename_end, |
|
device=device, |
|
) |
|
) |
|
|
|
model.to("cpu") |
|
model.eval() |
|
|
|
convert_scaled_to_non_scaled(model, inplace=True) |
|
logging.info("Using torch.jit.trace()") |
|
|
|
logging.info("Exporting encoder") |
|
encoder_filename = params.exp_dir / "encoder_jit_trace.pt" |
|
export_encoder_model_jit_trace(model.encoder, encoder_filename, params) |
|
|
|
logging.info("Exporting decoder") |
|
decoder_filename = params.exp_dir / "decoder_jit_trace.pt" |
|
export_decoder_model_jit_trace(model.decoder, decoder_filename) |
|
|
|
logging.info("Exporting joiner") |
|
joiner_filename = params.exp_dir / "joiner_jit_trace.pt" |
|
export_joiner_model_jit_trace(model.joiner, joiner_filename) |
|
|
|
|
|
if __name__ == "__main__": |
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" |
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO) |
|
main() |
|
|