pfluo's picture
Upload torch.jit.trace() exported files (#1)
138f2ef
raw
history blame
10.4 kB
#!/usr/bin/env python3
"""
Usage:
./pruned_transducer_stateless7_streaming/jit_trace_export-zh.py \
--exp-dir $dir/exp \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--lang-dir ./data/lang_char_bpe \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
\
--decode-chunk-len 32 \
--num-encoder-layers "2,4,3,2,4" \
--feedforward-dims "1024,1024,1536,1536,1024" \
--nhead "8,8,8,8,8" \
--encoder-dims "384,384,384,384,384" \
--attention-dims "192,192,192,192,192" \
--encoder-unmasked-dims "256,256,256,256,256" \
--zipformer-downsampling-factors "1,2,4,8,2" \
--cnn-module-kernels "31,31,31,31,31" \
--decoder-dim 512 \
--joiner-dim 512
"""
import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_transducer_model
from icefall.lexicon import Lexicon
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import AttributeDict, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless2/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="The lang dir",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
add_model_arguments(parser)
return parser
def export_encoder_model_jit_trace(
encoder_model: torch.nn.Module,
encoder_filename: str,
params: AttributeDict,
) -> None:
"""Export the given encoder model with torch.jit.trace()
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported model.
"""
decode_chunk_len = params.decode_chunk_len # before subsampling
pad_length = 7
s = f"decode_chunk_len: {decode_chunk_len}"
logging.info(s)
assert encoder_model.decode_chunk_size == decode_chunk_len // 2, (
encoder_model.decode_chunk_size,
decode_chunk_len,
)
T = decode_chunk_len + pad_length
x = torch.zeros(1, T, 80, dtype=torch.float32)
x_lens = torch.full((1,), T, dtype=torch.int32)
states = encoder_model.get_init_state(device=x.device)
encoder_model.__class__.forward = encoder_model.__class__.streaming_forward
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
traced_model.save(encoder_filename)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_jit_trace(
decoder_model: torch.nn.Module,
decoder_filename: str,
) -> None:
"""Export the given decoder model with torch.jit.trace()
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The input decoder model
decoder_filename:
The filename to save the exported model.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = torch.tensor([False])
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
traced_model.save(decoder_filename)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_jit_trace(
joiner_model: torch.nn.Module,
joiner_filename: str,
) -> None:
"""Export the given joiner model with torch.jit.trace()
Note: The argument project_input is fixed to True. A user should not
project the encoder_out/decoder_out by himself/herself. The exported joiner
will do that for the user.
Args:
joiner_model:
The input joiner model
joiner_filename:
The filename to save the exported model.
"""
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
traced_model.save(joiner_filename)
logging.info(f"Saved to {joiner_filename}")
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True)
logging.info("Using torch.jit.trace()")
logging.info("Exporting encoder")
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
export_encoder_model_jit_trace(model.encoder, encoder_filename, params)
logging.info("Exporting decoder")
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
export_decoder_model_jit_trace(model.decoder, decoder_filename)
logging.info("Exporting joiner")
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
export_joiner_model_jit_trace(model.joiner, joiner_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()