File size: 10,365 Bytes
138f2ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/env python3

"""
Usage:
./pruned_transducer_stateless7_streaming/jit_trace_export-zh.py \
  --exp-dir $dir/exp \
  --exp-dir ./pruned_transducer_stateless7_streaming/exp \
  --lang-dir ./data/lang_char_bpe \
  --epoch 99 \
  --avg 1 \
  --use-averaged-model 0 \
  \
  --decode-chunk-len 32 \
  --num-encoder-layers "2,4,3,2,4" \
  --feedforward-dims "1024,1024,1536,1536,1024" \
  --nhead "8,8,8,8,8" \
  --encoder-dims "384,384,384,384,384" \
  --attention-dims "192,192,192,192,192" \
  --encoder-unmasked-dims "256,256,256,256,256" \
  --zipformer-downsampling-factors "1,2,4,8,2" \
  --cnn-module-kernels "31,31,31,31,31" \
  --decoder-dim 512 \
  --joiner-dim 512
"""

import argparse
import logging
from pathlib import Path

import sentencepiece as spm
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_transducer_model
from icefall.lexicon import Lexicon

from icefall.checkpoint import (
    average_checkpoints,
    average_checkpoints_with_averaged_model,
    find_checkpoints,
    load_checkpoint,
)
from icefall.utils import AttributeDict, str2bool


def get_parser():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument(
        "--epoch",
        type=int,
        default=28,
        help="""It specifies the checkpoint to use for averaging.
        Note: Epoch counts from 0.
        You can specify --avg to use more checkpoints for model averaging.""",
    )

    parser.add_argument(
        "--iter",
        type=int,
        default=0,
        help="""If positive, --epoch is ignored and it
        will use the checkpoint exp_dir/checkpoint-iter.pt.
        You can specify --avg to use more checkpoints for model averaging.
        """,
    )

    parser.add_argument(
        "--avg",
        type=int,
        default=15,
        help="Number of checkpoints to average. Automatically select "
        "consecutive checkpoints before the checkpoint specified by "
        "'--epoch' and '--iter'",
    )

    parser.add_argument(
        "--exp-dir",
        type=str,
        default="pruned_transducer_stateless2/exp",
        help="""It specifies the directory where all training related
        files, e.g., checkpoints, log, etc, are saved
        """,
    )

    parser.add_argument(
        "--lang-dir",
        type=str,
        default="data/lang_char",
        help="The lang dir",
    )

    parser.add_argument(
        "--context-size",
        type=int,
        default=2,
        help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
    )

    parser.add_argument(
        "--use-averaged-model",
        type=str2bool,
        default=True,
        help="Whether to load averaged model. Currently it only supports "
        "using --epoch. If True, it would decode with the averaged model "
        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
        "Actually only the models with epoch number of `epoch-avg` and "
        "`epoch` are loaded for averaging. ",
    )

    add_model_arguments(parser)

    return parser


def export_encoder_model_jit_trace(
    encoder_model: torch.nn.Module,
    encoder_filename: str,
    params: AttributeDict,
) -> None:
    """Export the given encoder model with torch.jit.trace()

    Note: The warmup argument is fixed to 1.

    Args:
      encoder_model:
        The input encoder model
      encoder_filename:
        The filename to save the exported model.
    """
    decode_chunk_len = params.decode_chunk_len  # before subsampling
    pad_length = 7
    s = f"decode_chunk_len: {decode_chunk_len}"
    logging.info(s)
    assert encoder_model.decode_chunk_size == decode_chunk_len // 2, (
        encoder_model.decode_chunk_size,
        decode_chunk_len,
    )

    T = decode_chunk_len + pad_length

    x = torch.zeros(1, T, 80, dtype=torch.float32)
    x_lens = torch.full((1,), T, dtype=torch.int32)
    states = encoder_model.get_init_state(device=x.device)

    encoder_model.__class__.forward = encoder_model.__class__.streaming_forward
    traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
    traced_model.save(encoder_filename)
    logging.info(f"Saved to {encoder_filename}")


def export_decoder_model_jit_trace(
    decoder_model: torch.nn.Module,
    decoder_filename: str,
) -> None:
    """Export the given decoder model with torch.jit.trace()

    Note: The argument need_pad is fixed to False.

    Args:
      decoder_model:
        The input decoder model
      decoder_filename:
        The filename to save the exported model.
    """
    y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
    need_pad = torch.tensor([False])

    traced_model = torch.jit.trace(decoder_model, (y, need_pad))
    traced_model.save(decoder_filename)
    logging.info(f"Saved to {decoder_filename}")


def export_joiner_model_jit_trace(
    joiner_model: torch.nn.Module,
    joiner_filename: str,
) -> None:
    """Export the given joiner model with torch.jit.trace()

    Note: The argument project_input is fixed to True. A user should not
    project the encoder_out/decoder_out by himself/herself. The exported joiner
    will do that for the user.

    Args:
      joiner_model:
        The input joiner model
      joiner_filename:
        The filename to save the exported model.

    """
    encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
    decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
    encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
    decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)

    traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
    traced_model.save(joiner_filename)
    logging.info(f"Saved to {joiner_filename}")


@torch.no_grad()
def main():
    args = get_parser().parse_args()
    args.exp_dir = Path(args.exp_dir)

    params = get_params()
    params.update(vars(args))

    device = torch.device("cpu")

    logging.info(f"device: {device}")

    lexicon = Lexicon(params.lang_dir)
    params.blank_id = 0
    params.vocab_size = max(lexicon.tokens) + 1

    logging.info(params)

    logging.info("About to create model")
    model = get_transducer_model(params)

    if not params.use_averaged_model:
        if params.iter > 0:
            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
                : params.avg
            ]
            if len(filenames) == 0:
                raise ValueError(
                    f"No checkpoints found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            elif len(filenames) < params.avg:
                raise ValueError(
                    f"Not enough checkpoints ({len(filenames)}) found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            logging.info(f"averaging {filenames}")
            model.to(device)
            model.load_state_dict(average_checkpoints(filenames, device=device))
        elif params.avg == 1:
            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
        else:
            start = params.epoch - params.avg + 1
            filenames = []
            for i in range(start, params.epoch + 1):
                if i >= 1:
                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
            logging.info(f"averaging {filenames}")
            model.to(device)
            model.load_state_dict(average_checkpoints(filenames, device=device))
    else:
        if params.iter > 0:
            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
                : params.avg + 1
            ]
            if len(filenames) == 0:
                raise ValueError(
                    f"No checkpoints found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            elif len(filenames) < params.avg + 1:
                raise ValueError(
                    f"Not enough checkpoints ({len(filenames)}) found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            filename_start = filenames[-1]
            filename_end = filenames[0]
            logging.info(
                "Calculating the averaged model over iteration checkpoints"
                f" from {filename_start} (excluded) to {filename_end}"
            )
            model.to(device)
            model.load_state_dict(
                average_checkpoints_with_averaged_model(
                    filename_start=filename_start,
                    filename_end=filename_end,
                    device=device,
                )
            )
        else:
            assert params.avg > 0, params.avg
            start = params.epoch - params.avg
            assert start >= 1, start
            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
            logging.info(
                f"Calculating the averaged model over epoch range from "
                f"{start} (excluded) to {params.epoch}"
            )
            model.to(device)
            model.load_state_dict(
                average_checkpoints_with_averaged_model(
                    filename_start=filename_start,
                    filename_end=filename_end,
                    device=device,
                )
            )

    model.to("cpu")
    model.eval()

    convert_scaled_to_non_scaled(model, inplace=True)
    logging.info("Using torch.jit.trace()")

    logging.info("Exporting encoder")
    encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
    export_encoder_model_jit_trace(model.encoder, encoder_filename, params)

    logging.info("Exporting decoder")
    decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
    export_decoder_model_jit_trace(model.decoder, decoder_filename)

    logging.info("Exporting joiner")
    joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
    export_joiner_model_jit_trace(model.joiner, joiner_filename)


if __name__ == "__main__":
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

    logging.basicConfig(format=formatter, level=logging.INFO)
    main()